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Multi-Scale Vulnerability Assessment of Surge and Wind Hazards in Coastal 
Communities – Venice Island, Florida 

Introduction 

Management and protection of coastal areas worldwide is of particular interest as 

these areas are heavily populated, and are often subject to weather and climate-related 

hazards. In the US, approximately 30% of the total population resides in coastal 

communities [1], and the rate of population growth continues to increase steadily in 

these space-limited areas [2]. Another important element in coastal management 

includes the real estate market, which has appreciated at 7% a year over the last 50 

years in US [3]. Krugman [4] also argued that, due to the high-density population and 

limited space in coastal communities, housing buyers are willing to spend more money 

on coastal real estate markets. Yet, these near-shore landscapes are also very dynamic 

due to variations in winds, tide, and ocean currents, including low frequency, high-

impact events such as storm surge and flooding. Because of the potential of existing 

chances for economic losses and human casualties, it is critical for coastal communities’ 

administrator to identify the potential impacts and extent of these hazards.  

Scientists and researchers have used vulnerability assessment approaches to 

identify the potential damage from hazards and to develop plans for hazard mitigation. 

Vulnerability assessments have been conducted at different spatial scales, from the 

global [5, 6], national [7], and regional [8, 9], to the local [10, 11]. At the local level, i.e., 

the individual house or neighborhood, little research on vulnerability assessments has 

been conducted, primarily because implementation is often prohibited by logistical and 

financial constraints. Recent technological developments, such as Light Detection and 

Ranging (LiDAR) and Geographic Information System (GIS) software, provide more 
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Figure 1. The framework of the Hazus 
model as a vulnerability assessment tool. 

 

accurate and time-efficient tools that now make it feasible to conduct vulnerability 

assessments at local scales.  

Understanding and implementing vulnerability assessments for multiple hazards is 

another priority for hazard management efforts. For example, multiple hazards, e.g., 

flooding due to storm surge and strong winds, can occur when hurricanes affect coastal 

communities. Although several studies have assessed vulnerability of multiple hazards 

for coastal communities [12, 13], the difficulty of combining and synthesizing complex 

data from multiple sources and scales makes multi-hazard analysis particularly 

challenging [14]. Despite these challenges, a comprehensive vulnerability assessment 

for multiple hazards at local scale is critical for coastal communities. The goal of my 

study is to determine the complex relationships between mapping scales and the 

estimates for multi-hazard using Hazards United States Multi-hazard (Hazus) software, 

a methodology developed by the US FEMA.  

Hazus-MH model 

Hazus combines socio-economic and 

environmental characteristics, and then 

applies a hazard scenario in such a way 

where the vulnerability of human 

properties can be assessed (Figure 1). 

Three levels of analysis can be 

performed based on the detail of user-

provided information in Hazus: Level 1, 
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users apply the default inventory dataset and hazard scenario; Level 2, users are 

required to collect specific building and socio-economic attributes; and Level 3, users 

must import detailed engineering data, such as user-input damage functions for specific 

buildings [15]. Therefore, the more detailed the component of the Hazus model, the 

more accurate the vulnerability assessment will be. The current Hazus model includes 

three types of natural hazard models: Earthquake, Hurricane, and Flood, all of which 

run separately. In addition, FEMA also developed a combined model to assess multiple 

hazards to avoid overestimations from separate estimates of wind and storm surge 

damage in hurricanes [15, 16].  

Several studies have applied the Hurricane and Flood model to assess 

vulnerabilities. Others have focused on a comparison and verification of the Hazus 

outputs [17-21]. Level 2 modeling results provides more reliable estimations than Level 

1 [17, 22].The Hazus model has been shown to predict accurately inundation area after 

flood events at the county spatial scale and level of analysis [20]. While many of the 

previous authors focused on the comparison or improvement of environmental 

characteristics and hazard scenarios of Hazus, few have examined the socio-economic 

characteristics that constitute the inventory dataset of the Hazus model (Figure 1). In 

particular, not many have focused on examining the socio-economic inventory mapping 

scales. Most of the Hazus studies have applied the default mapping unit, which is the 

census block level in the Flood model and the census tract level in the Hurricane model. 

While users can import detailed building information as a User Defined Facility dataset 

to estimate possible damages and losses for individual buildings at the local scale, very 

few researchers have investigated this capability. In addition, few studies have 
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combined a housing price model with the Hazus model in order to estimate housing 

market losses from multiple hazards, which is essential for real estate management in 

coastal communities. The key objective of my study is to compare Hazus modeling 

results with two socio-economic inventory-mapping scales for a multi-hazard 

vulnerability assessment in order to estimate the losses of housing prices.  

To address this objective, this study focused on how the mapping scales of socio-

economic inventory (the census blocks versus individual houses) and 

hazard/environmental characteristics (wind, storm surge, and higher/lower resolution 

DEMs) affect the vulnerability assessment of multiple hazards. I carried out a Combined 

Hurricane and Flood (CHFH) model (Level 2) in Hazus for Venice Island, FL, a barrier 

island along the west coast of Sarasota County and as part of Venice City. I selected 

single family properties for this study due to: (1) a hedonic model analysis that can be 

integrated to generate more accurate predictions of housing prices; (2) single family 

properties that are the most common residential occupancies in coastal communities; 

and (3) single family properties that are simpler to include in analyses because they 

have only one or two buildings per unit. 

Method 

Study Area 

The highest ground elevation in study area is 33 feet to the southeast, and the 

closest and largest bay is Roberts Bay to the north. In 2010, the total population in 

Venice City was 20,784 with a median age of 67.6 years whereas approximately 57%of 

the population was over 65 years old [23]. Most of the residential and commercial 

properties are located on the northern and central part of the island, and Venice 
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Municipal Airport occupies most of the southern area. Of all the property parcels in 

Venice Island, 60% are single family properties (2020 houses). 

Hurricane and tropical storms are the most critical natural hazard in Sarasota County 

[24]. The 1944 Cuba-Florida Hurricane was one of the costliest natural hazards [25] to 

impact the area. The hurricane formed in the Caribbean Sea approximately 18:30 (EST) 

on October 12, 1944, and made landfall near Venice Island at around 03:00 (EST) on 

October 19 as a Category 3 hurricane on the Saffir-Simpson wind scale. Severe 

damage from high tides was reported along the coast of Sarasota County [26]. 

Data Preparation 

In this study, spatial data such as parcels, road networks, and digital elevation 

models (DEM) were collected from several sources: the Florida Geographic Data 

Library (FGDL), the National Hurricane Center (NHC), the Sarasota County Geographic 

Information System (SCGIS), and the Southwest Florida Water Management Water 

District (SWFWMD). Single-family sale records were acquired from the Sarasota County 

Property Appraiser (SCPA). I compiled these data in Excel spreadsheets, Access 

databases or ArcGIS shape files.  

Assemble Inventory Datasets 

Two mapping scales were processed and compared: the census block (CB) and the 

individual house (IH). I acquired detailed building information for each single-family 

property to build the IH dataset and aggregated it into census blocks as a CB dataset. 

To create an IH dataset, detailed attributes of single-family properties were compiled as 

an Access database and imported into the CHFH model. Most of the attributes were 

based on the parcel layer from FGDL and building information files from SCPA. To get 
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more accurate housing prices for single family properties, the cost for each property 

was calculated based on the hedonic model analysis, which can be used to estimate the 

ideal bundle of housing characteristics for home buyers [27]. Data from 2005 were used 

because the largest number of transactions occurred in this year. To increase the 

sample size, 6,388 single-family properties near the coastal region of Sarasota County 

were incorporated in the model. I used the multiple regression method to model the 

influence of housing characteristics on housing price, which can be written as: 

y! = β! + β!x!" + β!x!" +⋯+ β!x!" + ε!,      i = 1,… ,n                                                     (1) 

where yi is the market value of the property, β0 is the intercept of estimated prices, β1 to 

βp are  coefficients of housing characteristics (xi1 to xip), and εi denotes the random error 

(Table 1). To determine the best fit for the statistical model, logarithm transformations 

were applied to both dependent and explanatory variables.  

Table 1. Description, mean and standard deviation of variables used in the hedonic 
model analysis. 

Variable Unit / 
dummy Mean Standard 

Deviation 
Characteristic 
Type 

Just market value in 2005 
(dependent variable) USD 207898 256187  

Land area of parcel square feet 12099 17651 Structure  
On barrier Island or not dummy 0.05 0.22 Coastal-related 
Effect building year year  1984 17.38 Structure 
Total living area square feet 1802.68 798.31 Structure 

With boat dock or not dummy 0.33 0.18 Structure, Coastal-
related 

Have pool or not dummy 0.38 0.48 Structure 
Distance to public beach feet 29688 12336 Coastal-related 
Distance to Downtown Sarasota feet 68457 47342 Accessibility 
Distance to I-75 ramps feet 24176 12732 Accessibility 
Distance to shoreline feet 9754 7850 Coastal-related 
Ratio of population older than 65 
years olda percentage 0.3 0.2 Demography 

In Flood zone V or not dummy  0.0002 0.05 Coastal-related 
a Here the  ratio was based on the fraction of population older than 65-years-old divided by total population. The number of 
population was based on the 2010 Census Survey. 
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For each single-family property in the IH dataset, latitude and longitude coordinates 

defined at the center point of each building footprint, were used to represent one single-

family property. For the CB dataset, three attributes were aggregated from the IH 

dataset: total square footage, building counts and housing prices. To update these 

attributes, the Comprehensive Data Management System (CDMS), was utilized to 

replace the original values in the default CB dataset.  

In the Hazus model, the mapping scheme represents the general building 

characteristics for each census block and includes (1) the percentage of each building 

type and (2) building characteristics for the estimations. Except for the updated 

attributes described in the preceding paragraph, the default CB mapping scheme for the 

Hurricane model was applied because updating the mapping scheme for every 

individual census block manually would have been prohibitively time-consuming. For the 

Flood model, the default building type information was also applied. Unlike the 

Hurricane model, the Flood model focused on the first floor height, which was defined 

based on the general foundation type and assumed first floor elevation.  

Define Hazard Scenario 

The CHFH model requires data from a hurricane scenario to be able to model 

effects of wind and storm surge hazards associated with these storms. This study used 

data from the 1944 Cuba-Florida hurricane. These data are necessary to run the wind 

field model, which simulates wind speeds during a hurricane event. Wind speeds were 

calculated based on the parameters of the historical hurricane’s specific characteristics. 

In addition to the wind field model, terrain roughness was another important parameter 

for damage estimation. In general, the rougher the terrain, the lower the wind speeds 
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because friction reduces the hurricane winds near the surface. The roughness length in 

the study area ranges from 0.31 z0 to 0.41 z0, and it is categorized as a suburban land 

surface. 

To model storm surge and wave heights, Simulating Wave Nearshore (SWAN) and 

Sea, Lake, and Overland Surge from Hurricane (SLOSH) were used. SWAN is a model 

for simulating two-dimensional waves in nearshore areas, and SLOSH is a model for 

estimating storm surge height. The SLOSH cell grids, which are the modeling units for 

storm surge height calculation, were directly applied in the SWAN model to 1) maximize 

consistency in two models utilizing equivalent bathymetry data and 2) reduce computing 

time. The wind field model of the selected hurricane scenario drove both models. Initial 

water level is another model input. This represents the height above sea level of the 

predicted astronomical tide at (storm) landfall plus the pre-storm tide anomaly. The 

initial water level was set to 5.9 feet, based as the mean high water level of the tidal 

station in Venice Island. Using a two-way coupling computation of SWAN and SLOSH 

to process the maximum storm surge and significant wave height, a grid file was 

created with the associated storm surge wave heights during the hurricane event.  

Once the storm surge and wave height were estimated, flood depth was calculated 

based on the ground elevation of the study area. This study used two digital elevation 

models (DEMs) as the ground elevation models against which to compute the storm 

surge flooding depth: the National Elevation Dataset (30 feet cell resolution) and a 

LiDAR DEM (5 feet cell resolution). Two DEMs were used to compare the effect of 

higher versus lower resolution reference data on storm surge flooding estimates.  
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Estimation of Housing Price Losses 

It is important to note that the Hazus model assumes buildings are evenly distributed 

inside a census block for the CB dataset results. Conversely, the IH dataset was 

estimated based on the center point of building footprints, and thus, damage to 

individual buildings could be calculated. For housing price loss estimation of wind 

hazard, loss functions for specific building types were applied. The loss function was 

based on the wind speed from the hurricane scenario selected to be used in the model, 

and roughness of land surface. These loss functions show the relationship between 

wind speed to the ratio of cost of damage to house value. For the study area, the loss 

function of suburban was applied. For the storm surge estimation, housing price losses 

were computed based on the relative flooding depth of buildings. Depth-damage 

functions designate the relationship between flooding depth and the ratio of cost of 

damage to housing prices, and these functions were then used to calculate housing 

price losses. 

In addition to wind and storm surge only loss estimates, a combined wind and storm 

loss estimate was calculated: 

max(W, F) ≤ C ≤ min  (W+ F, 1.00)                                                                               (2) 

where W is the wind- only losses ratios, F is the storm surge- only loss ratio, and C is 

the combined wind and storm surge loss ratio. The combined housing price losses must 

be equal to or larger than the sum of wind-only and storm surge-only losses, and equal 

to or less than 100% of housing prices.  
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Figure 2. Predicted housing prices for single 
family properties in Venice Island, FL. 

Results 

Hedonic Model 

Results from the hedonic model showed 

that housing prices were strongly 

associated with coastal amenities, which 

led to extremely high housing values on 

beach and bay fronts. Five significant 

variables were related to coastal 

attributes (On barrier island or not, With 

boat dock or not, Distance to public 

beach, Distance to shoreline, In Flood 

zone V or not) at the 95% confidence 

level, which indicated the positive effects 

of coastal amenities on single family housing prices in the study area. Two accessibility 

variables were also significant: Distances to Sarasota Downtown and I-75 ramps, both 

of which indicated the importance of road networks and commercial services. Three 

basic structural characteristics (Land area of parcel, Effect building year, Total living 

area) were also significant with high T-values, which denote their importance of 

determining of housing values (Table 2). The adjusted R2 of the model was 0.88. Spatial 

autocorrelation was considered through calculation of the Global Moran’s I of estimated 

housing price residuals, which was -1.56. This value was less than the critical value of 

the null hypothesis, and indicates that the spatial autocorrelation was trivial. Figure 2 

shows the predicted single-family housing prices in Venice Island. The most expensive 

Roberts Bay	  

Gulf of 

 Mexico	  
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properties were located along the beach and bay fronts. Property prices dropped as 

distance from shoreline increased. These predicted housing values were imported as 

one of the IH attributes and were aggregated into census blocks for the CB dataset. 

Table 2. Regression coefficient, standard error, and t-values of variables in the hedonic 
model. 

Variable Regression 
Coefficient 

Standard 
Error T-value  Variance 

Inflation Factor 
Intercept -6.1889a 0.2396 -25.83  
Land area of parcel (log) 0.1591a 0.0081 19.73 1.57 
On barrier Island or not 0.201a 0.0093 21.56 1.77 
Effect building year 0.0044a 0.0001 34.64 2.01 
Total living area(log) 0.9348a 0.0145 64.26 2.47 
With boat dock or not 0.1511a 0.0108 13.94 1.57 
Have pool or not 0.0545a 0.004 13.76 1.50 
Distance to public beach (log) -0.0394a 0.0059 -6.66 1.89 
Distance to Downtown Sarasota 
(log) -0.1136a 0.005 -22.56 1.52 

Distance to I-75 ramps(log) -0.0603a 0.0084 -7.20 1.52 
Distance to shoreline (log) -0.0504a 0.0043 -11.70 2.82 
Ratio of population older than 
65 years old  0.2431a 0.0095 25.49 1.51 

In Flood zone V or not 0.2948a 0.0304 9.70 1.03 
R2 0.8869 Global Moran's I of 

residual -1.56 
Adjusted R2 0.8865 
Note: a denote the significance of parameter at 1% level based on t-statistic.  
 
Assessments of Housing Price Losses 

 The combined wind and storm surge assessment results demonstrated a 

complicated relationship between mapping scales and the detail of estimates. In general, 

the more detailed the hazard/environmental characteristics, the larger the difference of 

the IH and CB estimates. The CB dataset required less processing and computing time, 

but it was not able to capture the geographical variations across each census block. 

Conversely, the IH dataset required more processing and computing time but the 

estimate results were more detailed than the CB dataset. The pros and cons of the two 

datasets are listed in Table 3. The following sections will address the details of the 
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Figure 3. Housing price loss estimations for (A) the CB 
dataset and (B) the IH dataset. 

housing prices losses due to the separate wind and storm surge and the combined 

housing price losses estimates for wind and storm surge hazards. 

Table 3. Pros and cons of using the CB and IH dataset. 
 CB dataset IH dataset 
Pros � Less computing time of Hazus  (5 -6 

hrs). 
� The results are automatically 

computed.   

� Can capture much more details within 
census blocks 

� The damage and loss can be estimated 
for every building. 

Cons � Cannot reflect the geographic 
changes across census blocks. 

� Tends to overestimate damage and 
losses. 

� Longer computing time of Hazus (> 10 
hrs). 

� Some calculations require manual 
computation in ArcGIS. 

 
Wind-only Estimates 
For the 1944 Cuba-Florida hurricane scenario, two estimated wind speed values were 

assigned 121 and 125 mph. Due to the coarse resolution of the wind field model, the 

estimated wind speeds did not vary greatly across the entire study area. Because the 

wind- only 

assessments were 

based on hazard 

characteristics (wind 

speeds) with a 

smaller mapping 

scale, the estimate 

results for the CB 

and IH datasets 

were similar. The 

loss estimates for 

the CB and IH datasets are shown in Figure 3. Compared to the CB result, the IH 

Roberts Bay	   Roberts Bay	  
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Figure 4. The estimated storm surge flooding 
depth: (A) the result using a higher resolution 
DEM (LiDAR), and (B) result using a lower 
resolution DEM (NED). A’ and B’ show a zoomed 
in map of areas in A and B, respectively. The 
higher resolution result (A’) shows more accurate 
flood depth estimates and spatial flooding pattern. 

results showed more variability in housing price losses across the study area which was 

because the IH estimated losses for individual houses. Furthermore, due to the 

relatively high predicted housing prices near Roberts Bay and on the beach front, 

housing price loss estimates in both the CB and IH datasets were higher, even though 

the damage ratios were similar for the entire study area. 

Storm Surge-only Estimates 
 

The storm surge damage results revealed the importance of data accuracy to 

vulnerability assessment, as well as a more complex relationship between mapping 

scales and estimates of hazard characteristics, specifically storm surge flooding depth. 

Figure 4 shows the estimated storm 

surge flooding depth based on the 

higher (HR) and lower (LR) resolution 

DEMs. The zoomed in areas of 

northern Venice Island further 

illustrates the detailed flooding depth 

distribution in Figure 4 (A’) and 4(B’). 

The overall pattern of flooding depth 

for the HR and LR DEMs were similar; 

however, the HR results showed 

improved estimates. Figure 5 

presents the estimated housing price 

losses for storm surge flooding based 

on the GBD dataset. The highest 
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losses (8-9 million USD) occurred on two census blocks near Roberts Bay. Figure 5(C) 

shows the difference between the HR and LR results. Most of the differences were 

between ± 100,000 USD, and the block with the largest difference, which is about 

800,000 USD, was located in the census block on the bay-front of Roberts Bay. 

 

 

 

Figure 5. Storm surge loss estimates using the CB dataset based on the higher (A) and 
the lower (B) resolution DEM’s. Panel C shows the difference between A and B. 

Figure 6. Housing 
price loss estimates 
from storm surge 
flooding using the IH 
dataset based on the 
higher (A) and the 
lower (B) resolution 
DEM’s. Panel C 
shows the difference 
between A and B. 
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Figure 6 shows the estimated housing price losses based on the IH dataset. 

Most of the high losses were located on the bay front of Roberts Bay. The differences 

between the HR and LR results are shown in Figure 6 (C). Compared to the HR result, 

most of the loss estimates from the LR were higher. In addition, more properties were 

predicted to flood based on the LR result. This was because the HR DEM provided 

more detailed and accurate elevation information and, therefore had a greater ability to 

estimate the flooding depth, which was based on the center point of building footprints. 

The majority of the properties with higher loss estimates were located beside the bay 

and along beachfronts. Note that these properties were more sensitive to loss. For 

instance, the 50% value loss for a 6 million USD value, bay-front property is 

dramatically higher than the same percentage price loss of an inland property valued at 

100,000 USD. 

Combined Housing Price Loss Calculation  

Finally, combined wind and storm surge housing price loss estimates were 

calculated based on the combined wind and storm surge function (Function (4-3)). 

Figure 7 shows the housing price loss estimates based on the CB dataset. The highest 

estimated losses were located on the bay-front area, which was where the storm surge 

was greatest. The combined calculation using the IH dataset is shown in Figure 8. 

Compared with the CB result, fewer properties were flooded; therefore, most of the 

combined losses resulted from wind damage. Again, properties located on the beach 

and bay fronts had the highest combined housing price losses, which is because the 

predicted housing prices of these properties were much higher than properties located 

relatively inland.  
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Figure 7. The housing price loss estimates using wind-only (A) storm surge-only (B), 
and combined (C) wind and flood using the CB dataset.  
 

 
To compare the CB and IH results, the IH results were aggregated as census blocks 

for comparison. Figure 9 presents the difference between CB and IH results, which was 

Figure 8. Housing 
price loss estimates 
of wind-only (A) 
and storm surge-
only (B) and 
combined (C) wind 
and storm surge for 
the IH dataset. 
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calculated by subtracting the IH estimates from CB. Compared with the IH dataset, the 

CB dataset had similar loss estimate results in wind-only damage, but tended to 

overestimate the losses of storm surge-only damage. For the wind-only estimates, most 

of the differences were under two million USD; for the storm surge result, the difference 

is higher, especially in two census blocks nearby Roberts Bay. The differences of 

combined loss estimates (from wind plus storm surge) had a similar pattern to the storm 

surge result, which indicated that most of the differences could be attributed to 

differences in the storm surge estimates. The average difference of loss estimates 

between CB and IH as census blocks for the wind- only estimate was -796 USD 

(standard deviation: 155,814), for the storm surge- only damage was 466,554 USD 

(standard deviation: 1,092,432), and for the combined damage was 117,812 USD 

(standard deviation: 688,428).  

 
Figure 9. Comparison of the CB and IH datasets for wind-only (A), storm surge (B), and 
combined loss estimates. 
 

The overall difference of wind-only loss estimate was much lower than the storm 

surge- only estimates (Table 4). This was because the mapping scale of the wind 

damage was much smaller than storm surge damage. As mentioned before, only two 
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wind speeds were included in the study area (121 and 125 mph), which was because 

the wind speed distribution was determining using the regional scale model. For storm 

surge flooding, the distribution of flooding depth was more complicate: compared with 

results based on CB, the IH dataset was able to capture the complicated distribution of 

flooding damage. A conceptual framework for the relationship between mapping scale 

and detail of estimates is illustrated in Figure 10. 

 CB IH Difference 
Wind-only 27,609 24,940 2,669 
Storm Surge-only 
(LR) 26,791 10,249 16,542 

Storm Surge-only 
(HR) 24,825 9,053 15,772 

Combined 49,593 33,576 16,017 
 

 
 

Discussion 

Mapping Scale for Vulnerability Assessment 

Previous multi-hazard studies rarely addressed the influence of mapping scales to 

the vulnerability assessments [12, 13, 28]. For example, Mahendra et al. [12] 

overlapped sea-level change rate, shoreline change rate, and estimated return periods 

of extreme storm surge layers and categorized results into hazard and safe zones to 

Figure 10. Conceptual 
framework of mapping 
scales and detail of 
estimates for the CB and 
IH datasets.  

	  

Table 4. Estimates of total 
housing price losses in 1,000 
USD. The combined estimates 
was based on the HR result.	  
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identify vulnerable buildings. My results showed a complex relationship between 

mapping scales and estimates of vulnerability for multi-hazard. I applied a built-in 

historical hurricane scenario in Hazus. The mapping scale of wind speed was small, 

which was because the model of the built-in scenario was designed for regional scale 

studies. For storm surge estimates, users are required to import DEM data. A higher 

resolution DEM from LiDAR and the IH dataset were imported and were used to 

compare with a lower resolution DEM and the CB dataset. Results showed that the 

storm surge estimates results are much more complex than wind estimates. The LiDAR 

data has been utilized for several flooding estimation studies and its reliability has been 

confirmed [17, 19, 20, 29, 30]. For instance, Tate et al., [19] studied the uncertainty of 

the Hazus Flood model. They concluded that DEM is the largest source of uncertainty 

among the model components, and argued that the census blocks in an urban area 

have better estimated results compare to rural areas, because they are smaller with 

more evenly distributed properties. Still, as the results showed in this study, compared 

with the CB dataset, the IH can predict estimates more realistically. Kappes et al., [14] 

reviewed several literatures of multi-hazard studies, and argued that the availability of 

data and methods, as well as scale issues are main challenges. The overall vulnerability 

might regard differently from vulnerability for single hazard. 

It is possible to complete a more detailed and accurate modeling of wind and storm 

surge as a Level 3 Hazus model. For instance, Subramanian [21] compared the Hazus 

wind field model with 700,000 damage reports submitted after Hurricane Ike in Harris 

County, TX, using a machine learning method. They found the Hazus wind model had a 

predictive accuracy of only 29.5% with real damage, and suggested it was necessary to 
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improve the Hazus model by using more detailed parameters and damage functions. 

However, applying a Level 3 analysis requires the expertise of one or more engineering 

and technical experts, and the expected modeling time is six months to two years [31]. It 

would not be feasible for a local manager to complete a Level 3 hazard analysis, 

particularly during a real-time hurricane evacuation management where notification time 

of a Category 1 Hurricane is 12- 24 hours[32]. The Level 2 model method presented in 

this study provides a more practical method for estimating losses from wind and storm 

surge. 

Housing Prices for Economic Loss Estimation 

The loss function in Hazus model were based on the damage records and surveys 

of hurricane events, therefore, most of previous Hazus studies applied building and 

content values to estimate the direct economic losses [33-35]. To investigate the 

potential impact of hurricane events to coastal real estate market, I applied housing 

prices, which was computed using the hedonic model analysis, to estimate the 

economic losses of wind and storm surge hazards. The hedonic model result showed 

that coastal amenities had positive and significant influences on housing prices, which 

lead to extremely high housing values for beach and bay- front properties (Figure 2), 

Some of these properties were also prone to storm surge hazard, which led to high 

housing price losses on the bay-front of Roberts Bay. Note that these houses were also 

essentially more sensitive to loss estimations.  

Interestingly, in the hedonic model results, the dummy variable of Flood Zone V had 

a positive, significant relationship with housing prices, which was due to the fact that 

most of the single family properties located in the Flood Zone V had tremendous 
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aesthetic benefits from water bodies, such as private access to beaches and ocean 

views. In fact, several studies have investigated the impact of hurricane [36, 37] and 

flood [3, 38] events as local housing real estate markets. For instance, Morgan [36] 

found average housing prices were 15% lower after Hurricane Ivan in Santa Rosa 

County, FL relative to prices before the hurricane. Venice Island has not been exposed 

to a severe hurricane event for decades; this study provides a benchmark for assessing 

the relationship between real estate markets and natural hazards and conducting a 

multi-hazard assessment for the area. 

Conclusion 

Multiple hazards might threaten coastal communities, especially during hurricane 

events. Therefore, multi-hazard vulnerability assessment, which has been utilized to 

identify hazard-prone areas and calculate possible costs of damages, is important for 

hazard management. Multi-hazard analysis is not an easy task because of complex 

methods and data from multiple sources scales. Thus far, there still lacks of a 

comprehensive study of determine the influence of mapping scales on vulnerability 

assessment for multiple hazards.  

The main objective of this study was to utilize a Level 2 CHFH model to estimate the 

housing price losses using storm parameters from the 1944 Cuba-Florida Hurricane 

scenario. Two mapping scales of socio-economic inventory dataset were applied: CB 

(census block) and IH (individual building), note that few studies have applied IH scale 

for vulnerability assessment. This study also used DEMs with higher and lower 

resolutions for floodplain designations to determine the influence of DEM resolutions on 

results.   
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The results presented the complex relationships between mapping scales and the 

details of estimates. For the wind damage assessment, the wind field model was 

designed for application at a regional scale. Therefore, the distribution of wind damage 

was nearly uniform across the entire study area, and the losses estimates of using CB 

and IH were similar. For the storm surge assessment, the distribution of storm surge 

flooding depth was more detailed than that for the wind model, and the CB dataset was 

not able to estimate realistic damage because the buildings were assumed to be evenly 

distributed across the census block. This study also compared the storm surge flooding 

estimates with higher (HR) and lower resolution (LR) DEMs. For the CB dataset, the 

differences between HR and LR were similar; for the IH dataset, the HR provided a 

more accurate estimate of storm surge flooding because the HR DEM had a better 

ability to estimate the ground elevation of each building. The combined calculation of 

housing price losses showed that the highest losses occurred on beach- and bay- front 

properties due to the extremely high housing prices. Most of the difference of CB and IH 

results came from storm surge damage estimates (~15 million USD). Furthermore, the 

estimated housing prices losses presented the sensitive of estimation of high-housing 

prices properties, which mostly located on beach- and bay- fronts, and were more prone 

to storm surge hazard. 

For future applications of the Level 2 CHFH model, the CB dataset would be 

sufficient for the wind- only assessment; however, for storm surge, the IH dataset with 

higher resolution DEM for assessment is strongly recommended. The housing price loss 

estimates can also provide a benchmark estimate for housing buyers and real estate 

manager. Future studies could complete a Level 3 CHFH model with more detailed wind 



23	  
	  

model and damage functions to further examine the influence of mapping scales. Finally, 

the CHFH model only considers the wind and storm surge model; freshwater flooding 

from hurricane precipitation was not included. This can be an important factor, 

considering that approximately one-fourth of fatalities from Atlantic tropical cyclones 

result from freshwater flooding [39]. A combined estimate of damage from wind, storm 

surge, and freshwater hazards would better estimate vulnerability of coastal areas from 

hurricane hazards.  
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