

Earthquake Hazard Mitigation Research and Practice: 10 years after Chi-Chi Earthquake

Research on Earthquake Engineering

Keh-Chyuan Tsai, PhD, SE Dept. of Civil ENG, Nat'l Taiwan University (NTU) National Center for Research on Earthquake Engineering (NCREE) National Science and Technology Center for Disaster Reduction (NCDR)

Overview of Presentation

Revision of seismic force requirements for building structures. Seismic safety improvement of school buildings in compulsory, senior high and occupational schools. Some example implementations.

Faults and Historical Epicenters

Historical damaging

oorthauokoo

1

表0001、台灣十大災害地震和地震系列震源參數一覽表

编號	地震名稱	發震時間 (120°E)	震央位置		震源	地震
			北緯(N)	東經(E)	深度 (公里)	規模 (M _L)
1	斗六地震 145	1904/11/06 04:25	23.575	120.250	7.0	6.1
2	梅山地震	1906/03/17 06:43	23.550	120.450	6.0	7,1
3	1258+17 南投地震系列 16+1+53 3279	1916/08/28 15:27	24.000	121.025	45.0	6.8
		1916/11/15 06:31	24.100	120.875	3.0	6.2
		1917/01/05 00:55	24.000	120.975	很淺	6.2
		1917/01/07 02:08	23.950	120.975	很淺	5.5
4	新竹一台中地震	1935/04/21 06:02	24.350	120.817	5.0	7.1
5	中埔地震360	1941/12/17 03:19	23.400	120.475	12.0	7,1
6	新化地震74	1946/12/05 06:47	23.070	120.330	5.0	6.1
7	花東縱谷地震系列 68+17	1951/10/22 05:34	23.875	121.725	4.0	7.3
		1951/10/22 11:29	24.075	121.725	1.0	7.1
		1951/10/22 13:43	23.825	121.950	18.0	7.1
		1951/11/25 02:47	23,100	121.225	16.0	6.1
		1951/11/25 02:50	23.275	121.350	36.0	7.3
8	恆春地震 17	1959/08/15 16:57	21.700	121.300	20.0	7.1
9	白河地震 106	1964/01/18 20:04	23.200	120.600	18.0	6.3
10	花蓮地震 15	1986/11/15 05:20	23.992	121.833	15.0	6.8
俳	集地震(2403) 19	99/09/21 01:4	7 23.85	120.78	10.0	7.3

□ Developments of Seismic Design Code for Building in Taiwan before 1999 Chi-Chi Earthquake :

- Before 1974
- 1974
- 1982
- 1989 (minor modification)
- 1997

Seismic Force Requirements in Taiwan

□ Before 1974

- Base shear: V=0.1W
- **1974**
 - Base shear: V=ZKCW
 - **Z** = 1.25, 1.0, 0.75
 - K = 0.67, 0.8, 1.0, 1.33
 - $\bullet C = 0.1/\sqrt{\bullet} \le 0.1$
 - W = D+0.25L
 - Remarks
 - Seismic hazard
 - Structural ductility
 - Structural period

□ 1982

- Base shear: V=ZKCIW
 - **Z** = 1.0, 0.8, 0.6
 - **K** = 0.67, 0.8, 1.0, 1.33
 - C = 1/8/ ≤ 0.15
 - I = 1.0, 1.25, 1.5
 - W = D
- Remarks
 - Importance factor

Basin Effect

- Mexico EQ (1985)
- Hwa-lian EQ (Taiwan, 1986)
- □ 1989 (minor modification)
 - Base shear: V=ZKCIW
 - Taipei Basin $C = 0.248/T \le 0.15$ with $T_0=1.65$ sec.
 - Remarks:

A building collapsed in Taipei Basin with ED >100 km (Hwa-lian EQ, 1986)

Basin effect for Taipei Basin

997

• Base shear:

- I = 1.0, 1.25, 1.5
- $\bullet \mathbf{W} = \mathbf{D}$

- $\alpha_v = 1.2$ for WSD, 1.5 for USD
- $F_{u}(R_{a}) \approx 2.1, 2.5, 2.9$
- Remarks
 - Zoning factor Z: design PGA (10%/50 years)
 - Site classification (S1, S2, S3 and Taipei Basin)
 - Reduction factor F_n: Newmark-Hall recommendations
 - Dynamic analysis procedures (response spectrum) **method**)

Taiwan Strong Motion Instrumentation Program (TSMIP): A 20-year Plan (1990-2010)

- □ Started from 1990
- Being installed and maintained by CWB
- Target: 1000 strong motion stations
- □ 109 real-time stations
- 800+ strong motion stations
- □ 50+ monitored structures
- All are digital Instrumentation

1999 Chi-Chi Earthquake

□ 1999 (after Chi-Chi EQ)

• Base shear:

- C_{max}= 2.5 for Taipei Basin
- Remarks:
 - Emergency response: released three months after the event temporarily

臺灣地區震區劃分建議圖

□ Organized by NCREE in 2005

□ Objectives

- Continued modification of existing seismic design code
- Development of next version of seismic design code (Performance based Seismic Design)

Site Classification for Taiwan Strong Motior

4 classes

The correlation between the site classification and the site amplification is not good.

Another approach is needed.

Site Investigation Program

- NCREE and CWB cooperated a long term project to investigate the site conditions for the strong motion arrays.
- 333 stations were completed (red stars, depth = 30 m);
- □ 22 stations, the bore hole depth > 50 m.

http://geo.ncree.org.tw/

Site-adjusted spectral response acceleration parameters
 Include local site effects by site coefficients F_a and F_y

$\mathbf{H}_{\mathbf{n}\mathbf{n}} = \mathbf{H}_{\mathbf{n}}\mathbf{H}_{\mathbf{n}}^{\mathbf{n}} \quad \mathbf{I} \quad \mathbf{H}_{\mathbf{n}\mathbf{n}} = \mathbf{H}_{\mathbf{n}}\mathbf{H}_{\mathbf{n}}^{\mathbf{n}}$

- Site coefficients F_a and F_v are functions of site class (S1, S2 or S3) and mapped spectral response acceleration parameters
- Design spectral response acceleration S_{aD}
 - **Based on S_{DS} and S_{D1}**

Taipei Basin (design level)

- Four microzones (issued in 2005)
 - **Representative corner period** *T*₀ **for each microzone**

Taipei Z1 (
$$T_0=1.6$$
 sec.)
Taipei Z2 ($T_0=1.3$ sec.)
Taipei Z3 ($T_0=1.05$ sec.)
Taipei Z4 ($T_0=0.85$ sec.)

The distribution is in accordance to the basin shape and reflects the thickness of the sedimentary soil layers in Taipei Basin

□ Three microzones (revised in 2008)

• Boundary of Taipei Basin (EL 20m)

921 Chi-Chi Earthquake

At 01:47AM Sept. 21, 1999. Magnitude of 7.3 About 2,500 deaths.

Buildings in 293 compulsory and secondary schools collapsed in Chi-Chi earthquake. 21

Typical School Buildings Vulnerable in longitudinal direction

Brick Wall

Classroom

Corridor

Weak Direction

Vulnerable along Corridor Direction

Column Failures at First Floors

The number of school buildings in compulsory and se 10,746 school buildings

Needs! •Nation-wide effort •Prioritization •Efficiently enhance seismic capacity •Budget

Stages for School Upgrading Simple Survey by school administration through internet Preliminary Evaluation by P.E.'s through filling templates Detailed Evaluation and Retrofit Design by P.E.'s cost effective methods are verified

Experimental Facilities in NCREE

L-shape reaction wall (15m+12m+9m+6m in height)

5mx5m

Earthouake s

Test Result– Wing Walls

Vretrofit= 63.1 t

Vprototype= 48.2 t

Failure Modes : Beam – Flexural Failure Joint – Shear Failure

Kou-Hu Specimen 2 Frames retrofitted with RC Wing Walls

Collapse 29

Window of Opportunities

- **Research on Seismic Retrofit Since 2003.**
- **Devastating EQ Occurred in China, May 2008.**
- **Global Economic Crisis Stimulus Plan**
- Legislative Yuan approved "Special Act for **Developing Economy and Expending Public Development**" on Jan.13, 2009.
- Legislative Yuan approved "New Scheme for **Developing Economy**" on Apr.10, 2009.
- A total of budget of US\$1.6 billion dollars has been approved for 2009-2012 for school seismic retrofit project

Mission of the Project Office

- Provide standard contracts for seismic evaluation and retrofit design
- Construct reviewer resource data bank
- Assist in review on retrofit design
- Provide seminar and technical training
- Construct and maintain data bank
- Collect and publish results of the project
- Visit outstanding seismic retrofit cases

Progress and Technical Training

- Manual for seismic retrofit of school building completed in Oct. 2008
- 13 seminars and 82 courses since 2008 for 960 practitioners (seismic evaluation and design procedures)
- 19 coordination meeting held among school administrators, Professional Engineers and reviewers. (reference unit cost, review process, procurement)
- Additional 23 seminars and 71 couses for 1582 engineers on prescribed evaluation procedures procurement since March 2009.
- A data base for the evaluation, design and review works

Seismic Retrofit Example: Wanfang Elementary School in Taipei

