Preparing for Disaster Using Scenarios: The Earthquake Experience

DAVID WALD

United States Geological Survey wald@usgs.gov

Natural Hazards Center
Annual Workshop
July 116, 2009
Boulder, Colorado

Scenario Questions Posed:

Earthquakes \star Floods \star Hurricanes \star Landslides \star Tsunamis \star Volcanoes \star Wildfires

1. What tools are you using to portray disaster impacts in a meaningful way?
2. Can the same scenarios be used for mitigation \& response planning? What specific elements do you need for one as opposed to the other?
3. Some scenarios are highly technical \& depend on cutting edge scientific \& engineering input. Are more comprehensive scenarios more effective in bringing about the desired behavior of members of the technical \& emergency management communities, educate the general public, and policy makers? How are scenarios modified for different audiences \& what techniques help to get buy in \& ownership of a scenario.
4. Are you aware of any post scenario evaluations that have determined effectiveness in changing behavior/attitudes, etc? Have you attempted to evaluate the materials you have created?
5. What technical, financial, or information resources exist for communities, agencies, or organizations wishing to develop their own scenarios?

Earthquake Scenarios

- USGS ShakeCast -

ShakeMap _ FEMA's HAZUS \qquad

- USGS's PAGER

ZUSGS

USGS ShakeCast

Automating, Simplifying, and Improving the Use of ShakeMap for Post-Earthquake Decisionmaking and Response
hakeCast is a freely available, post-earthquake situaticnal awareness application that automatically retrieves earthquake shaking data from ShakeMap, generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

What is ShakeCast?
ShakeCast, short for ShakeMap Broadcast, is a fully automated system for delivering specific ShakeMap products to critical users and for triggering established post-earthquake response protococs. ShakeMap is a well-established tool used to
portray the extent of potentially damaging shaking following an earthquake. ShakeMap is automatically generated for small and large earthquakes in areas where it is available and can be found on the Internet at h trp:///oarthquake. usgs. gov/shakemap/. It was

RESPONDING TO GLOBAL EARTHQUAKE HAZARDS PAGER—Rapid Assessment of an Earthquake's Impact

PAGER (Prompt Assessment of Giobal Eartiquakes for Response) is an automated system to rapidly assess the number of people and regions exposed to severe shaking by an earthquake, and inform emergency responders, government agencies, and the media to the scope of the potential disaster. PAGER monitors the U.S. Geological Survey's near real-time U.S. and global earthquake detections and automatically identifies events that are of societal importance, well in advance of ground-truth or news accounts.

The U.S. Geological Survey's National Earthquake Information Center (NEIC), located in Golden, Colorado, reports over 30,000 earthquakes a year. Tragically about 25 of these cause significant damage, injuries, or fatalities. The
U.S. Geological Survey (USGS) often detects earthquakes well before eyewitness reports are available. It must then decide rapidly whether Federal and international agencies should be alerted to a potentially damaging event. In the past, the USGS primarily relied on the experience and intuition of its on-duty seismologists to estimate the impact of an event. To improve the n automated sysem to rapidly estimate the number of people an automated system to rapidy estimate te number of people occurring anywhere in the world.

PAGER provides important information to help emer gency relief organizations, government agencies, and the media plan their responses to carthquake disasters. Content includes instrumentally-determined carthquake parameters of location, magnitude, and depth and an estimate of the number of people exposed to different severities of shaking-a useful indicator
of potential impact. For most events, the system generates a
comment describing infrastructure vulnerability in the region,
and damage and fatality reports from previous nearby earthquakes. A table summarizes the predicted shaking intensity overvicws of shaking levers and maps provide quiek This information is available on the USGS earthquak cbsite http://earthquake.usgs.gov/ and as a printable, one-page report with accompanying description such as that shown in the following pages. Fundamental to such a system, the USGS operates a robust computational and communication infrastructure necessary for earthquake respons.

PAGER results are generally available within 30 minutes of a significant earthquake, shortly after the determination of its location and magnitude. However, information on the extent of shaking will be uncertain in the minutes and hours following an earthquake and typically improves as additional sensor data and reported intenssies are acquired and incorporated into models should account for uncertainty and always scek the most current PAGER release for any earthquake

Collapsed adobe church in Pisce, Pen following the August 15, 2007, magnitude a0 arathquake For events such as this, PACER emergency relief organizations with information that helps them determine which areas likely require the most attention. Photograph by

USCS Home Contact USGS Search USGS

Farthquake Hazards Program

Home Earthquake Center Regional Information About Earthquakes Research \& Monitoring Other Resources
You are here: Home » Earthquake Center » ShakeMap
Latest Earthquakes
USA
World
EQ Notification Service
(1) Feeds \& Data

Animations
Recent Earthquakes:Last 8-30
Days
Earthquake Archives
Lists \& Maps
Search EQ Database
EQ Summary Posters
Scientific Data
About EQ Maps
Did You Feel It?
Fast Moment Tensors
Media Info
PAGER
Seismogram Displays
ShakeMaps
ShakeMap Archive
ShakeMap Atlas
ShakeMap RSS
Scientific Background
Product Formats
Disclaimer

ShakeMaps

ShakeMap is a product of the U.S. Geological Survey Earthquake Hazards Program in conjunction with regional seismic network operators. ShakeMap sites provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. These maps are used by federal, state, and local organizations, both public and private, for post-earthquake response and recovery, public and scientific information, as well as for preparedness exercises and disaster planning.

Networks producing ShakeMaps
Click a network name to view a list of events, or on an image to view the event

10347253

Hawaii

Earthquake Hazards Program

Home Earthquake Center Regional Information About Earthquakes Researct You are here: Home " Earthquake Center " ShakeMap " S California
Latest Earthquakes
USA
World
EQ Notification Service
Beeds \& Data
Animations
Recent Earthquakes:Last 8-30
Days
Earthquake Archives
Lists \& Maps
Search EQ Database
EQ Summary Posters
Scientific Data
About EQ Maps
Did You Feel It?
Fast Moment Tensors
Media Info
PAGER
Seismogram Displays ShakeMaps

ShakeMap Archive
ShakeMap Atlas
ShakeMap RSS
Scientific Background
Product Formats
Disclaimer
Related Links
Comments
(3) Find: Q

Done

Shakemap scShakeOut2_full_se
Instrumental Intensity Peak Ground Acceleration Peak Spectral Response
0.3 sec Period 1.0 sec Period

Media Maps
Decorated Bare
Downloads

Downloads

Maps
Instrumental Intensity JPG (149 kB) PS (308 kB)

Peak Ground Acceleration
JPG (106 kB)
PS (180 kB)
Contours (45 kB)
Peak Ground Velocity
JPG (108 kB)
PS (181 kB)
Contours (58 kB)
Uncertainty
JPG (117 kB) PS (89 kB)

Spectral Response
0.3 sec Period JPG (112 kB) PS (181 kB)

Metadata

Data

Raw Grids

Text X, Y, Z Values (988 kB) XML (5 Mb)

GIS Files

HAZUS Zip File (9 Mb)
Shape Files (5 Mb) KML (2 kB)

Station Lists
Text (492 B)
XML (2 kB)
Metadata
HTML (43 kB)
Text (31 kB)
XML (27 kB)
Supplemental Information
XML (2 kB)
.3 sec Period JPG (112 kB)
PS (181 kB)

HTML (43 kB)
Text (31 kB)
XML (27 kB)
Supplemental I
XML (2 kB)
ShakeMap "Download" Page

The USGS Earthquake Scenario Development Project

Wald, D., Wald, L., Petersen, M., Frankel, A., Quitoriano, V., Lin, K., Bausch, D.

The USGS Earthquake Hazards program is producing a comprehensive suite of earthquake scenarios for planning, mitigation, loss estimation, and scientific purposes. For each event, fundamental input is i) the magnitude and specified fault dimensions, and ii) regional Vs30 shear velocity values for site amplification. A grid of standard ShakeMap ground motion parameters (PGA, PGV, and three response spectral values) is then produced using the well-defined, regionally-specific approach developed by the USGS National Seismic Hazard Mapping Project (NHSMP), including recent advances in empirical ground motion predictions (e.g., the NGA relations). The framework also allows for numerical (3D) ground motion computations for specific, detailed scenario analyses. Unlike NSHMP ground motions, for these scenarios, local rock and soil site conditions and commensurate shaking amplifications will be applied based on detailed Vs30 maps where available or based on topographic slope as a default.

The scenario event set is comprised primarily by disaggregation of NSHMP events, though custom events are also chosen based on coordination of the scenario team and regional seismic hazard or seismic network coordinators. The event set will be harmonized with existing and future scenario earthquake events produced regionally or by other researchers. This includes ~ 200 events in CA, ~ 200 in NV, dozens in NM, UT, and smaller number in other regions. Systematic output will include all standard ShakeMap products, including HAZUS input, GIS, KML, and XML files used for visualization and loss estimation, ShakeCast, PAGER, and other systems. All products will be delivered via the ShakeMap web pages in a user-searchable archive. For each event, USGS PAGER runs will be produced, providing population exposure at current population levels. Hence, three types of ShakeMap events will be available: Scenario (specified fault and estimated ground motions); Historic (faulting, ground motion and intensity data where available); and, Modern events (e.g., recent events in regions with numerous ground motion recordings).

Anticipated users include the Federal Emergency Management Agency, the loss

ShakeMap Atlas

ShakeMaps for >5,600 Earthquakes globally (1973-2008)

- All available data (ground motion, intensity, fault plane)
- Site conditions from topography
- Standard ShakeMap approach to combine observed/estimated ground motions
- Over 60 events in Califormia alonet)

2USGS
scrence for a changing world

An Atlas of ShakeMaps for Selected Global Earthquakes

Open-File Report 2008-1236

U.S. Department of the interior
 U.S. Department of U.S. Geological Survey

Latest Earthquakes

USA

World
Feeds \& Data Animations Days
Earthquake Archives Lists \& Maps
Search EQ Database

Scientific Data
About EQ Maps
Did You Feel It?
Fast Moment Tensors
Media Info
PAGER
Seismogram Displays
ShakeMaps
ShakeMap Archive
ShakeMap Atlas

Other uses than Scenarios: PAGER, GEM, Loss Estimation, Insurance, Mitigation, Response Planning, UNEP, CUEDD, ...

science for a changing world
Earthquake Hazards Program
Home Earthquake Center Regional Information About Earthquakes Research \& Monitoring Other Resources You are here: Home " Earthquake Center » ShakeMap " ShakeMap Atlas

EQ Notification Service

Recent Earthquakes:Last 8-30

EQ Summary Posters

ShakeMap Atlas
Scientific Background on ShakeMap Atlas

Years: $2007|\underline{2006}| \underline{2005}|\underline{2004}| \underline{2003}|\underline{2002}| \underline{2001}|\underline{2000}| \underline{1999}|\underline{1998}| \underline{1997}|\underline{1996}| \underline{1995}|\underline{1994}| \underline{1993}|\underline{1992}| 15$ 1985 | 1984 | 1983 | 1982 | | 1981 | | 1980 | | 1979 | | 1978 | 1977 | 1976 | 1975 | 1974 | 1973

ShakeMaps during 2007

10 Matching ShakeMaps Found!
Mag Name/Epicenter Date Time Lat Lon Event ID
8.0 Off Coast of Central Peru Aug 152007 23:40:58 UTC -13.358 -76.522 200708152340
6.2 RUSSIAN FEDERATION Aug 022007 02:37:42 UTC 47.110141 .810200708020237 Jul 212007 22:44:13 UTC 38.93670 .485200707212244 Jul 162007 01:13:22 UTC 37.520138 .460200707160113 Jun 022007 21:34:57 UTC 23.020101 .010200706022134 Apr 212007 17:53:46 UTC -45.240-72.670 200704211753 Apr 012007 20:39:56 UTC -8.430157 .060200704012039 Mar 252007 00:41:58 UTC 37.340136 .540200703250041 Mar 062007 03:49:39 UTC -0.480 100.470200703060349 Jan 212007 11:27:45 UTC 1.065 126.282 200701211127

-- Earthquake Planning Scenario --
ShakeMap for Shakeout2 Full Scenario
Scenario Date: NOV 132008 10:00:00 AM M 7.8 N33.35 W115.71 Depth: 7.6km

PLANNING SCENARIO ONLY -- Map Version 1 Processed Tue Apr 1, 2008 02:08:50 PM MDT

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(\%g)	$<.17$	$\mathbf{. 1 7 - 1 . 4}$	$\mathbf{1 . 4 - 3 . 9}$	$\mathbf{3 . 9 - 9 . 2}$	$\mathbf{9 . 2 - 1 8}$	$18-34$	$34-65$	$65-124$	>124
PEAK VEL.(cm/s)	<0.1	$0.1-1.1$	$1.1-3.4$	$3.4-8.1$	$\mathbf{8 . 1 - 1 6}$	$\mathbf{1 6 - 3 1}$	$\mathbf{3 1 - 6 0}$	$\mathbf{6 0 - 1 1 6}$	$\mathbf{> 1 1 6}$
INSTRUMENTAL INTENSITY	\mathbf{I}	II-III	$\mathbf{I V}$	\mathbf{V}	$\mathbf{V I}$	VII	VIII	$\mathbf{I X}$	X+

-- Earthquake Planning Scenario --
ShakeMap for Saf South7.8 Scenario

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(\%g)	$<.17$	$\mathbf{. 1 7 - 1 . 4}$	$\mathbf{1 . 4 - 3 . 9}$	$\mathbf{3 . 9 - 9 . 2}$	$\mathbf{9 . 2 - 1 8}$	$18-34$	$34-65$	$65-124$	>124
PEAK VEL.(cm/s)	<0.1	$0.1-1.1$	$1.1-3.4$	$3.4-8.1$	$\mathbf{8 . 1 - 1 6}$	$\mathbf{1 6 - 3 1}$	$\mathbf{3 1 - 6 0}$	$\mathbf{6 0 - 1 1 6}$	$\mathbf{> 1 1 6}$
INSTRUMENTAL INTENSITY	I	II-III	IV	V	VI	VII	VIII	IX	X+

-- Earthquake Planning Scenario --
ShakeMap for Shakeout2 Full Scenario
Scenario Date: NOV 132008 10:00:00 AM M 7.8 N33.35 W115.71 Depth: 7.6km

PERCEIIED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTTNTAL									
DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(\%g)	$<\mathbf{1 7}$	$\mathbf{. 1 7 - 1 . 4}$	$\mathbf{1 . 4 - 3 . 9}$	$\mathbf{3 . 9 - 9 . 2}$	$\mathbf{9 . 2 - 1 8}$	$18-34$	$34-65$	$65-124$	>124
PEAK VEL.(cm/s)	<0.1	$0.1-1.1$	$1.1-3.4$	$3.4-8.1$	$\mathbf{8 . 1 - 1 6}$	$\mathbf{1 6 - 3 1}$	$\mathbf{3 1 - 6 0}$	$\mathbf{6 0 - 1 1 6}$	$\mathbf{> 1 1 6}$
INSTRUMENTAL INTENSITY	\mathbf{I}	II-III	IV	\mathbf{V}	VI	VII	VIII	IX	X+

Building Inventory Data in HAZUS

Exposure data: total building square footage \& dollars, by occupancy (33), and census tract for entire US. (\rightarrow proxy data)

- Mapping scheme data: for each occupancy, provides a \% distribution across structural or "model building" types. $\rightarrow \sim$ Based on ATC-13 profiles.

San Luis Obispo County Comparison to HAZUS default

Difference Between Assessor's Data And HAZUS MR-2 Default Data (Relative To Assessor's Data)

General Occupancy	Number of Buildings (MR-2)	Square Footage (MR-2)
Residential	29%	28%
Commercial	-76%	240%
Industrial	18%	1725%

\rightarrow Lesson Learned: HAZUS default data may overestimate exposure (sq ft) in smaller, less urban counties.

$\frac{1 ㄹ ㅡ ㄹ ㄹ ~}{12}$

Los Angeles County Comparison to HAZUS default

Difference Between Assessor's Data And HAZUS Default Data (Relative To Assessor's Data)

General Occupancy	\# Bldgs (MR-2)	Sq. Ft. (MR-2)	Sq. Ft. (MR-3)
Residential	18%	6%	6%
Commercial	-68%	-46%	-41%
Industrial	-81%	-55%	-40%

\rightarrow Lesson Learned: HAZUS default data may underestimate non-residential exposure (sq ft) in large, urban counties.

Courtesy of H. Seligson, MMI Engineering

ShakeCast

 ShakeMap BroadCast - Moving beyond "looking at" ShakeMapAutomatic Damage Assessment for Critical Facilities

U.S. Department of the Interior

SHAKEMAP WEB SERVERS

USER'S DATABASES

Internal Web Page \& User Interface

```
To Caltrans-ShakeCastAdmin@dot.ca.gov
```

cc

Subject BRIDGE ASSESSMENT: 6.7, Northridge (Northridge_scte Version 1)

Caltrans ShakeCast Preliminary Earthquake Bridge Impact Report

This report supersedes any earlier reports about this event. This is a computer-generated message and has not yet been reviewed by an Engineer or Seismologist. Information about the epicenter,

 $227-7174$ or by email.

CISN Rapid Instrumental Intensity Map for Northridge Earthquake

Piccessect: Tue Jun ze, 2004 cs 35.17 PM PDT.

PECLVED	Not iell	Wesk	Lighi	Misderats	Storg		Severe	Violent	Extreme
	none	now	nore	Very ight	Ligin	Iisoderate	Iisoderats/feary	Heary	Very Hoa
	$<.17$.17-1.4	1.4-3.9	3.0-0.2	0.2.18	18.31	34.85	65-124	>124
prakvel.(en/a)	00.1	0.1-1.1	1.1-3.4	3.4-3.1	8.1.18	16.31	31-60	60-116	$\rightarrow 116$
IMSTFLMEMTAL IIIEISTIY	I	IL-III	IV	V	VI	VII	VIII	IX	X 1

Event Summary

Event Summary

Name: (Unnamed Event) , Version 1
Magnitude: 6.7
ID: Northridge scte-1
Location: Northridge
Latitude: 34.213
Longitude: -118.5357
Time: 1994-01-17 12:30:55 GMT

Downloads \& Resources

- View an interactive version of this report on the Caltrans ShakeCast Website. (Login with username: guest , password: guest .)
- Download ArcGIS shapefiles, GoogleEarth KML files, and other products from the Caltrans ShakeCast Products directory
- Download the Statewide Bridge Inventory as a GoogleEarth KML file
- Download the bridge priority list as an Excel Spreadsheet

Bridge Assessment Summary

Maximum Peak 1.0 sec Spectral Acceleration: $198.7484 \% \mathrm{~g}$
Maximum Acceleration: (not measured)
Total number of bridges assessed: 2448
Summary by inspection priority:

High	$\mathbf{1 6}$
Medium-High	35
Medium	53
Low	$\mathbf{2 3 4}$

High Priority for full engineering assessment
Medium-High Priority for full engineering assessment
Medium Priority for full engineering assessment
Low Priority for full engineering assessment; quick visual inspection likely sufficient.

Bridge Assessment Details

Bridges presented in the table below are sorted in order of severity of impact(exceedance ratio). The list includes all state bridges in the area of shaking where the 1 sec Peak Spectral Acceleration exceeds $10 \% \mathrm{~g}$.

Bridge Name	Bridge Number	Dist-Cty-Rte-PM	Inspection Priority	1sec Peak Spectral Acceleration (\%g)	Exceedance Ratio
531548 - ROUTE 5T/405 SEPARATION	531548	07-LA-005-41.55-LA	High	127.2633	1.686
532217 H - E118-S405 CONNECTOR UC	532217 H	07-LA-118-R9.74-LA	High	140.0625	1.569
532204 - HAYVENHURST AVENUE UC	532204	07-LA-118-R8.34-LA	High	198.7484	1.378
531133 - ROUTE 5/405 SEPARATION	531133	07-LA-005-41.57-LA	High	127.2633	1.347
531013 - SIERRA HIGHWAY OC	531013	07-LA-014-24.3	High	115.578	1.257
53 2793R - MISSION-GOTHIC UC	532793 R	07-LA-118-R8.63-LA	High	198.7484	1.202
532793 L - MISSION-GOTHIC UC	532793 L	07-LA-118-R8.63-LA	High	198.7484	1.184
53 1991F - NORTH CONNECTOR OC	531991 F	07-LA-210-R.02-LA	High	129.9639	1.144
532207 - WOODLEY AVENUE UC	532207	07-LA-118-R9.04-LA	High	171.7947	1.138
531011 - LOS ANGELES AQUEDUCT CHANNEL	531011	07-LA-005-R44.4-LA	High	131.0299	1.031
532794 L - BULL CREEK CANYON CHANNEL	532794 L	07-LA-118-R8.84-LA	High	171.7947	1.025
532794 R - BULL CREEK CANYON CHANNEL	532794 R	07-LA-118-R8.84-LA	High	171.7947	1.025
53 2016L - FOOTHILL BLVD UC	532016 L	07-LA-210-R.43-LA	High	129.9639	1.018
53 2016R - FOOTHILL BLVD UC	532016 R	07-LA-210-R.43-LA	High	129.9639	1.018
532208 - GAYNOR AVENUE UC	532208	07-LA-118-R9.33-LA	High	171.7947	1.017
PENSTOCK	531012	07-LA-005-R44.41-LA	High	131.0299	1.005
531984 L - WEST SYLMAR OH	531984 L	07-LA-005-R44.87-LA	Medium-High	115.578	0.923
531983 - S5TRUCK-S5 UC	531983	07-LA-005-R44.81	Medium-High	115.578	0.869
532925 - SANTA CLARA RIVER BRIDGE	532925	07-LA-005-R53.7-SCTA	Medium-High	144.1786	0.811
53 0996L - WELDON CANYON ROAD UC	530996 L	07-LA-005-C45.86	Medium-High	115.578	0.691
53 1519M - EAST CANYON CHANNEL	531519 M	07-LA-005-40.53-LA	Medium-High	122.517	0.514
53 1988F - W210-S5 CONNECTOR SEPARATION	531988 F	07-LA-210-R.12-LA	Medium-High	129.9639	0.436
530688 - SANTA CLARA OVERHEAD	530688	07-LA-005-R53.94-SCTA	Medium-High	144.1786	0.430
532209 - HASKELL AVENUE UC	532209	07-LA-118-R9.57-LA	Medium-High	140.0625	0.401
53 2210G - E118-S405 CONNECTOR UC	532210 G	07-LA-118-R9.7-LA	Medium-High	140.0625	0.401
531986 - BALBOA BLVD OC	531986	07-LA-005-R44.43	Medium-High	131.0299	0.355
53 1989F - W210-S5 CONNECTOR OC	531989 F	07-LA-210-R.06-LA	Medium-High	129.9639	0.353
531506 - RINALDI STREET UC	531506	07-LA-405-47.75-LA	Medium-High	134.893	0.339
532214 - CHATSWORTH DRIVE UC	532214	07-LA-118-R10.51-LA	Medium-High	111.3769	0.323
532215 - FOX STREET UC	532215	07-LA-118-R10.83-LA	Medium-High	111.3769	0.323
53 1961G - N5 TRK-N14 CONNECTOR	53 1961G	07-LA-005-C45.63-LA	Medium-High	115.578	0.312
531507 - SAN FERNANDO MISSION BLVD	531507	07-LA-405-47.24-LA	Medium-High	134.893	0.303
531688 - RYE CANYON ROAD UNDERCROSSING	531688	07-LA-005-R54.17-SCTA	Medium-High	144.1786	0.303
530849 - WELDON CANYON OH	530849	07-LA-005-C45.75	Medium-High	115.578	0.270
531501 - CHATSWORTH STREET UC	531501	07-LA-405-46.74-LA	Medium-High	140.0625	0.242
532396 - RUFFNER AVENUE OC	532396	07-LA-118-R8.05-LA	Medium-High	175.6548	0.239
530730 - SAN FERNANDO ROAD OH	530730	07-LA-005-R43.84-LA	Medium-High	129.9639	0.230
532139 M - WILEY CANYON CHANNEL	532139 M	07-LA-005-R49.2	Medium-High	91.7766	0.196
532216 G - N405-E\&W118 CONNECTOR OC 531131 - SAN FERNANDO MISSION	532216 G	07-LA-405-46.8-LA	Medium-High	140.0625	0.151
BOULEVARD UC	531131	07-LA-005-40.24-LA	Medium-High	122.517	0.079
53 2343G - E118-S5 CONNECTOR OC	532343 G	07-LA-118-R11.32-LA	Medium-High	111.3769	0.077
532357 - ARLETA. AVENUE UC	532357	07-LA-118-R11.05-LA	Medium-High	111.3769	0.077
532395 - BALBOA BLVD OC	532395	07-LA-118-R7.8-LA	Medium-High	175.6548	0.069

\#Google Earth

Scenario Questions Posed:

Earthquakes \star Floods \star Hurricanes \star Landslides \star Tsunamis \star Volcanoes \star Wildfires

1. What tools are you using to portray disaster impacts in a meaningful way?
2. Can the same scenarios be used for mitigation \& response planning? What specific elements do you need for one as opposed to the other?
3. Some scenarios are highly technical \& depend on cutting edge scientific \& engineering input. Are more comprehensive scenarios more effective in bringing about the desired behavior of members of the technical \& emergency management communities, educate the general public, and policy makers? How are scenarios modified for different audiences \& what techniques help to get buy in \& ownership of a scenario.
4. Are you aware of any post scenario evaluations that have determined effectiveness in changing behavior/attitudes, etc? Have you attempted to evaluate the materials you have created?
5. What technical, financial, or information resources exist for communities, agencies, or organizations wishing to develop their own scenarios?

Scenario Questions Posed:

Earthquakes \star Floods \star Hurricanes \star Landslides \star Tsunamis \star Volcanoes \star Wildfires

1. What tools are you using to portray disaster impacts in a meaningful way? ShakeMap + HAZUS, ShakeCast, or PAGER, etc.
2. Can the same scenarios be used for mitigation \& response planning? What specific elements do you need for one as opposed to the other? Yes \& No: Depends on scale of analyses, users, uses.
3. Some scenarios are highly technical \& depend on cutting edge scientific \& engineering input. Are more comprehensive scenarios more effective in bringing about the desired behavior of members of the technical \& emergency management communities, educate the general public, and policy makers? How are scenarios modified for different audiences \& what techniques help to get buy in \& ownership of a scenario.
Input must be realistic but not overdone; that said, benefits come from efforts to inlist users.
4. Aware of or attempted to evaluate the materials you have created? No formal analyses; plenty of annectdotal feedback leads to new approaches.
5. What technical, financial, or information resources exist for communities, agencies, or organizations wishing to develop their own scenarios? Comprehensive ShakeMap/HAZUS/ ShakeCast collection will be available based on input from regional users/local experts. Responders need to practice/plan with same tools that will be available after an earthquake!

Closing thoughts:

Earthquakes

Floods
Hurricanes
Landslides

Quote from President and military leader, Dwight D. Eisenhower:
"In preparing for battle I have always found that plans are useless, but planning is indispensable."

Quote from Professor Hiroo Kanamori:
"If the next big earthquake [in California] was expected, that would be unexpected."

minnip

ThanR ou

http://earthquake.usgs.gov

