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Using Building Permits to Monitor Disaster Recovery: 
A spatial-temporal case study of coastal Mississippi following Hurricane Katrina 

 
ABSTRACT: The pace of disaster recovery can vary considerably from one place to 
another even when those places suffer impacts from the same event. Unfortunately, most 
recovery studies lack the spatial and temporal resolution to fully understand the processes 
of built environment recovery. This paper discusses the use of a spatial scan statistic for 
the identification of spatial and temporal dimensions of recovery using building permits 
issued in Mississippi following Hurricane Katrina. Significant space-time and purely 
spatial clusters are identified using this method. The research suggests that the amount of 
damage experienced by an area affects the timing and location of building permit clusters 
and that other factors related to underlying socio-economic and demographic 
characteristics of a place may also play a role in recovery of the built environment.  
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Introduction 

Recovery from a natural disaster is a dynamic and multifaceted process, yet we lack 

basic information about the recovery process itself, the spatial and temporal variability of 

recovery from disaster events, and the drivers behind the processes that are taking place. 

The inability of most methods to provide information about the pace and progression of 

recovery leads to the problematic conclusion that recovery is spatially uniform and 

consistent from one time period to another (Cutter et al. 2006; Zottarelli 2008).  

One past model (Kates and Pijawka 1977) suggests that long term recovery of the Gulf 

Coast following Hurricane Katrina could take approximately 11 years. Within that time 

several billion dollars of aid and countless hours will be spent rebuilding the damaged 

structures and community institutions impacted by the storm. While many studies 

following Hurricane Katrina have revealed recovery disparities driven by class and gender, 

few methods or metrics are capable of capturing trends of recovery throughout the entire 



 

spatial extent and over several years of the recovery period (Cutter et al. 2006; Elliott and 

Pais 2006; Kates 2006; Zottarelli 2008). However, following a disaster with the magnitude 

of Katrina, it is important to understand how long-term recovery is manifested within an 

affected landscape and to uncover the physical, social, and political drivers of recovery and 

how they shift through space and time.        

This paper implements a spatial scan statistic, SaTScan, to examine the space-time 

trends of built environment recovery following a natural disaster. Scan statistics are a 

common tool used to determine if points are randomly distributed in space and time, or if 

they are clustered (Kulldorff, 1997). This research specifically investigates the spatial and 

temporal patterns of building permits issued in three municipalities on Mississippi’s Gulf 

Coast following 2005’s Hurricane Katrina. The spatial-temporal relationships between 

permits issued, damage amounts, and the pre-event number of housing units in the affected 

area forms the base of this inquiry. We question whether spatial and temporal clusters of 

building permits, if they exist, are related to certain damage level or pre-event housing 

categories. Through this method we demonstrate an improvement in our understanding of 

the uneven progression of recovery following a disaster by outlining a replicable process 

using publicly available data and statistical analysis tools. 

 

What is Recovery? 

A recent review of Hurricane Katrina research focused on human systems (Erikson and 

Peek 2009) identified 87 articles related to post-disaster recovery since the storm. Of these, 

40 were published in 2006, 32 in 2007, and 11 in 2008. This decline shows perhaps a 



 

waning interest in understanding recovery trends over time, but more importantly it 

demonstrates that temporally sensitive data gathering and monitoring, clearly necessary for 

understanding trends in recovery from disaster, is falling off as well.  

 Defining what recovery is and means for affected communities is fundamental to 

finding appropriate ways to measure it. Recovery varies depending on the context of the 

disaster, the level of impact and extent of the damage, and the pre-event conditions (Bates 

& Peacock 1989; Quarantelli 1999). Within the literature the term recovery has been used 

interchangeably with rebuilding, restoration, and redevelopment (Mileti 1999; Quarantelli 

1999).  These terms, however, are inadequate when trying to generalize about community 

recovery as a process, one that that includes infrastructure, the environment, institutions, 

and society.  

In addition to physical destruction and disruption, disasters interrupt the highly 

connected social fabric of communities (Bolin 1976). While some of the literature 

addresses recovery as a multi-dimensional concept from a theoretical perspective, few 

researchers approach case studies with the goal of measuring all aspects of recovery. Most 

case studies of recovery fall into one of five broad themes of recovery: (1) psycho-social; 

(2) institutional; (3) economic and business; (4) built environment, (5) natural 

environment. The first, psycho-social recovery, includes studies such as recovery of 

individuals from stress-disorders caused by the event or the re-establishment of 

interfamilial roles following a disaster (Kenardy et al. 2000; Gault 2005; Bolin 1976).  The 

second, institutional recovery, addresses the reestablishment and functioning of 

governmental systems, schools, hospitals, and others that aid communal functionality post-



 

disaster (Rubin and Barbee 1985). The third theme, economic and business recovery, 

examines specific industries in an affected area, such as Chang’s (2000) study of the 

recovery of the port economy following the 1995 Kobe earthquake in Japan. Broader city 

or region-wide recovery of all business types have also been conducted (Nigg 1995; Tierny 

1997; Webb et al. 2002). The fourth theme, recovery of the built environment, such as 

regaining the numbers of pre-storm housing and transportation infrastructure, is arguably 

the most commonly addressed in governmental and institutional reports of disaster 

recovery (Liu and Plyer 2009; McCarthy and Hanson 2008). Recovery of the built 

environment is necessary as a precursor to most other recovery processes and the relatively 

easy acquisition of useful data (e.g.: census data, tax records) likely accounts for the 

greater representation of work in this area. The final theme, recovery of the natural 

environment, such as forest re-growth and habitat renewal, is characterized very differently 

from the previous themes (e.g. the recovery of forest ecosystems damaged by a hurricane) 

(Walker 1991; Orr and Ogden 1992). Although recovery of the natural environment may 

be linked to other types of recovery, especially economic recovery of communities that 

rely on eco-tourism, it is generally not addressed in the hazards literature. Analysis of 

natural environment recovery uses a separate body of tools rooted in geology, biology, and 

the environmental sciences than those used to measure recovery of human systems. While 

individual studies may focus on a particular aspect of recovery, it is important to recognize 

that every type of recovery is linked to the human system and is therefore connected to and 

at least partially representative of the recovery process as a whole.   



 

 A fundamental disagreement within much of the disaster recovery literature, regardless 

of the type of recovery being examined, is whether recovery means returning to a stable 

state following a disaster, returning the affected area to pre-event conditions, or whether 

recovery necessitates an adaptation or betterment process (Bates and Peacock 1989; Mileti 

1999; Quarantelli 1999; Kates et al. 2006; Anderson 2007; Alesch et al. 2008). For 

example, Rubin and Popkin (1990) describe a model of recovery that reconciles both the 

view of recovery as a return to normalcy and as a betterment process. However, this model 

does not clarify or quantify spatial or temporal differences in the recovery process. Recent 

research emphasizes the need to integrate betterment processes throughout disaster 

recovery, assess vulnerability issues that may have exacerbated the effects of the disaster, 

and use the recovery period following a disaster as an opportunity to address other 

preexisting social issues (Cutter et al. 2006; Kates et al. 2006; Olshansky 2006).   

 

Measuring Recovery  

Various studies have attempted to conceptually understand the drivers of recovery or 

qualitatively and quantitatively measure how much recovery has occurred in an affected 

area. Measuring recovery in social systems is often approached with interviews and field 

observations (Rodriguez et al. 2006; Runyan 2006). Physical and spatial indicators of 

recovery – changes to the built environment – have been assessed through surveys, 

geographic information systems, and other analysis and visualization techniques, including 

aerial and satellite photography, and spatial video acquisition systems (Laben 2002; Curtis 

et al. 2007; Liu and Plyer 2009). Unfortunately, many of these data sources only provide a 



 

snapshot of recovery at certain points in space and time, or through the lens of a select 

sample of research participants and do not take into account the underlying spatial and 

temporal interactions between the drivers and outcomes of the recovery process itself. 

 The type of recovery assessed (i.e.: social or physical), the methods of measurement 

utilized, and how results are interpreted have practical implications. Conclusions from 

these studies can influence how priorities for further recovery of an affected area are set, 

and whether and how improvements should be pursued. Therefore, it is important to 

understand how different methods can lead to varying conclusions and interpretations 

about the progress of recovery following a disaster. 

 Qualitative methods, such as interviews and field observations, are context based verbal 

and visual descriptions of phenomena. These methods can provide rich observation-based 

data and are better than quantitative methods for assessing individual case information. 

Qualitative methods are helpful for understanding the questions of “how” and “why,” such 

as why disasters affect people and impact the social constructs within a community in 

different ways (Johnson and Onweugbuzie 2004).     

 Interviews have been used to evaluate the perceptions and recovery experiences of 

disaster victims from different race, gender, and income backgrounds. For example, Bolin 

(1986) interviewed victims of the devastating Paris, Texas tornadoes (1982) to better 

understand differences in the perception of both economic and emotional recovery of black 

and white residents. In this case, interviews revealed the way resources were shared 

differently within racial groups and the types of aid that were more or less likely to be 

accessed depending on race.  



 

 Similarly, emotional recovery, due to its deep contextual nature and individual nuances, 

is better assessed using qualitative methods. Rodriguez et al. (2006) utilized extensive field 

observations to describe emergent prosocial behavior and its effects on disaster response 

and early stages of recovery following Hurricane Katrina. Their work contradicts a 

common belief that antisocial behavior is the dominant social force following a disaster 

and calls into question the necessity of command-and-control management following 

disasters. Although these and related methods can provide a deeper understanding of how 

and why communities utilize certain tools or aid sources, form social networks, and 

interact following a disaster, this type of data can often take longer to collect and analyze 

than many forms of quantitative research.  

 Quantitative methods provide relatively objective assessments of recovery that are more 

easily analyzed numerically – lending themselves well to analysis within and across 

different geographic areas. Quantitative data is often better for assessing the recovery of 

physical environments, understanding the statistical significance of relationships, and can 

be used to assess the validity of constructed theories (Johnson and Onweugbuzie 2004). 

 Surveys are a common quantitative tool which, like qualitative methods, can be used to 

assess perceptions, emotions, and social interactions. While surveys do not provide the 

contextual depth of an interview, they can reach a larger number of participants and 

provide data that is more easily analyzed statistically. Webb et al. (2002) used surveys to 

measure long-term business recovery. Both physical recovery (e.g. whether or not a 

business sustained physical damage) and economic recovery (e.g. whether businesses had 



 

reopened following the disaster and how their income had been affected) were investigated 

as was the business owners’ perception of the broader economic climate following disaster. 

 The most basic quantitative analyses, and those most often reported by government 

agencies and aid organizations, are simple numerical comparisons of pre- and post-event 

conditions. Examples include measuring household recovery by identifying when a home 

value returns to its pre-event level or comparing the number of housing units that have 

been rebuilt to what was in place before the event (Jaycox et al. 2006). These simple 

numeric approaches can provide useful measures of demographic trends and physical 

recovery post-disaster.  

 An extension of these quantitative comparisons is the development of recovery indices. 

Indices more formally compare recovery to a data baseline in order to track the progress of 

recovery. The New Orleans Index reports extensively on several recovery indicators 

including population recovery, the amount and location of new construction and repairs, 

housing and employment vacancy rates, school enrollment, retail sales, and the availability 

of schools, libraries, and childcare (Liu and Plyer 2009). Despite their ability to reflect 

several types of recovery, an accurate portrayal of recovery can be elusive as these indices 

cannot answer the important question of why certain recovery trends are occurring.  

 Other important tools include using aerial photography, remote sensing, and geographic 

information systems (GIS) to assess the progression of recovery following a disaster.  To 

date, these tools have generally been developed for data gathering in support of immediate 

response efforts and for preliminary damage assessment damage. However, as geospatial 

techniques continue to evolve they are used increasingly in recovery management and 



 

assessments, as well as mitigation and preparedness activities. While generally restricted to 

physical environment monitoring at present, these techniques can produce results that can 

be extrapolated to serve as indicators of other types of recovery. For example, QuickBird 

Satellite Imagery was used following the 2003 Algerian earthquake for assessing built 

environment recovery progress as well as determining the distribution of resources (Adams 

et al. 2003).  Laben (2002) promoted GIS and remote sensing as a useful tool for informing 

emergency managers and decision makers about the progress of built environment 

recovery in order to help formulate budgets and refocus recovery efforts on the areas with 

the most need. GIS mapping can take a step beyond the collection of visual indicators of 

recovery by overlaying and analyzing several layers of information such as the spatial and 

temporal distribution of rebuilding, the level of disaster impacts, and demographic 

information (Jarmin and Miranda 2006). With accurate and timely data, GIS and visual 

imaging tools can provide insight into how far recovery of the built environment has come, 

where it is and is not occurring, and how trends change throughout the recovery period and 

across the landscape. Importantly, these tools may need to be supplemented by survey or 

qualitative information in order to draw more accurate conclusions about the drivers of 

recovery patterns and findings produced should be interpreted within the limits of the 

technology.   

 

Methods 

Creating useful information from spatial data is an important step toward the 

development of effective policies for disaster reduction. Utilizing building permit data as a 



 

surrogate for built environment recovery is a multi-step process which includes data 

collection, cleanup and standardization, and geocoding in advance of any analysis. This 

process, along with an overview of the study area and other data used in this research, is 

explained in the following sections.  

 

Study area 

 Hurricane Katrina struck the U.S. Gulf Coast on August 29, 2005 and caused substantial 

damage and loss of life in Alabama, Mississippi, and Louisiana from wind, flooding, and 

storm surge. The eye of the storm passed over Waveland and Bay St. Louis on the western 

side of the Mississippi coast. Approximately 60 percent of the housing stock in the three 

coastal counties of Mississippi suffered some level of damage (Jaycox et al. 2006). The 

three Mississippi cities referenced in this paper received some of the greatest and most 

direct impacts from the storm. These cities include Bay St. Louis in Hancock County, and 

Pass Christian and Long Beach in Harrison County (Figure 1). Table 1 summarizes some 

general characteristics of each municipality. Each differs considerably from the other in 

overall population size, racial composition, and median income.  

 

FIGURE 1 HERE 

TABLE 1 HERE 

 

 
 

 



 

Data  

A tremendous volume of data, both spatial and non-spatial in nature, was collected 

following Hurricane Katrina. Much of this data was considered perishable and reflects the 

activity during the immediate response period. Data collected solely within this limited 

time frame do not provide the information needed to analyze and understand spatial and 

temporal trends in long term recovery. Accordingly, this research utilized three types of 

data that provide the spatial and temporal resolution necessary for a more comprehensive 

understanding of the recovery process. These data are derived from local building permits, 

Federal Emergency Management Agency (FEMA) damage classification categories, and 

the 2000 U.S. Census of population and housing. 

 

Building Permits 

 Building permits issued post-disaster represent a novel measure of physical recovery 

from the storm. Permits are issued in Mississippi by the Building Code Office or the 

Building and Development Department at either the city or county level. Permits are 

necessary to legally begin any construction, structural remodeling, utilities adjustments 

(including gas, electric, plumbing), demolition, or siting a mobile home. The permits 

typically include the name of the permit applicant, the street address where the work will 

be completed, the type of work being done, the approximate value of the work, the permit 

fee charged, and date the permit was issued.  

 Permit summaries were collected from Building and Development Offices as 

geospatially enabled databases, as Microsoft Excel spreadsheets, in digital portable 



 

document format (PDFs), or as images of paper permits from ten municipalities. These 

municipalities, in addition to data from Mississippi’s three coastal counties, Hancock, 

Harrison, and Jackson, include Waveland, Bay St. Louis, Pass Christian, Long Beach, 

Gulfport, Biloxi, Ocean Springs, Gautier, Pascagoula, and Moss Point (Table 2). This 

paper presents a focused analysis of Bay St. Louis, Pass Christian, and Long Beach. The 

permits cover activity from August 2005 through December 2008. Building permits are 

recorded daily and the work outlined in the permit must be initiated within 60-90 days of 

the issue date depending on the municipality’s restrictions. This unique dataset is limited 

by the inability to confirm that the work was completed, the possibility of missing or 

incomplete date, and errors in either building valuation or the fee accessed for the permit 

(some municipalities did not charge for permits in the immediate aftermath of the storm). 

There is also no standard reporting format among the municipalities.  

 

TABLE 2 HERE 

 

 Located within the public realm, building permit data can be obtained in several 

different ways. For this research we were able to receive digital data through telephone and 

email requests from two counties and three municipalities. The remaining jurisdictions 

either did not have the data digitally or had no way of sending the information in a 

computer-compatible format. A site visit to collect this information in paper format was 

necessary.  In summary, the four data formats are paper permits that have not been made 



 

digital, scanned paper documents, digital reports, and geospatially enabled databases 

(Figure 2). 

 

FIGURE 2 HERE 

 

 Latitude and longitude coordinates for each permit location were derived by using an 

address locator created in ESRI’s ArcCatalog. Approximately 90 percent of all permits 

geocoded successfully. Those that did not geocode to a known address were excluded from 

all further analysis. Each of the geocoded permits was subsequently assigned a unique 

identification number. Of 17,529 individual permits from the three focus communities, 

15,896 permits geocoded successfully. A geocoded permit can be spatially joined to census 

data or damage categories for more detailed analysis. To avoid representing the same 

property multiple times with separate permits for different work types, this study utilizes 

8,870 of the geocoded permits as this subset is exclusively building permits rather than 

permits for electricity, plumbing, or other construction-related tasks requiring a different 

(additional) permit.  

 

Damage Categories 

 Each permit location was also classified by the level of damage. The damage 

assessment dataset (damage polygons) was developed by the National Geospatial-

Intelligence Agency (NGA) for the Federal Emergency Management Agency (FEMA) 

response to Hurricane Katrina. Shortly after Hurricane Katrina, FEMA made ESRI 



 

shapefiles of the estimated damage within affected areas available for download via the 

internet. The damages assigned to each permit location are described as:  

1. Limited Damage: Generally superficial damage to solid 

structures…some mobile homes and light structures are damaged 

or displaced.  

2. Moderate Damage: Solid structures sustain exterior 

damage…some mobile homes and light structures are destroyed, 

and many are damaged or displaced.  

3. Extensive Damage: Some solid structures are destroyed, most 

sustain exterior damage…most mobile homes and light structures 

are destroyed.  

4. Catastrophic Damage: Most solid and all light or mobile 

structures are destroyed. (Jarmin and Miranda 2006, 2).  

While thorough, the damage polygon dataset may not account for all damages in each 

place and averaging damage for an area may mean being unable to account for internal 

variability in the damaged area.  

 

Census Data 

 Finally, a digital polygon shape boundary file representing census tracts from the 2000 

U.S. Census was spatially joined to the permit address coordinate point file using ESRI 

ArcGIS 9.3. Five categories of housing concentration, as measured by the number of 

housing units in each census tract, were created using natural breaks in the data. The 



 

number of pre-event housing units was chosen as a baseline indicator under the supposition 

that more permits would be issued where more units existed prior to the storm. Spatial 

deviations from these areas might suggest a new trend of rebuilding not in the original 

threatened location, but rather in a newer location, possibly further from the coast. Each 

permit was associated with a housing unit category through a tabular join. The clusters 

were then analyzed by their composition relative to these categorical data.    

 

Spatial Scan Statistic 

 Spatial Scan Statistic (SaTScan) version 8.0 (www.satscan.org) was used to identify 

clusters of permits in the study area throughout the entire study period (August 2005-

December 2008). Some recent work has expanded the use of the freely available SaTScan 

software into hazards applications. For example, Vadrevu (2008) used SaTScan to analyze 

the significance of wildfire occurrence clusters in India while Witham and Oppenheimer 

(2005) evaluated historic mortality clusters in England following the 1783-84 Laki Craters 

eruption. However, SaTScan technology has not been utilized to track the progress of 

recovery from major disaster events. This is likely due to the historical lack of data with 

the level of spatial or temporal resolution needed to evaluate “clusters” of recovery.  

 SaTScan uses a scan statistic to analyze either spatial, temporal, or space-time point 

data (Abe et al. 2006). The software is useful for this study as it provides outputs in a 

format compatible with ESRI ArcGIS. The software makes no assumptions about if and 

where clusters exist. Once clusters are identified by SaTScan, they are tested for 

significance using a Monte Carlo test. The Monte Carlo statistic tests the significance (p-



 

value) of each cluster by comparing the maximum likelihood, or the likelihood that a 

cluster could have occurred randomly in the data set. For this study, only those clusters 

with the highest significance (0.001 chance of occurring randomly) are discussed. The 

analysis is conditioned by the total number of observed points to calculate an expected 

value. The number of points in each scan window is then compared against the expected 

value to identify areas with higher than expected concentrations of permits (Kulldorff 

1997; Abe et al. 2006). The scan window is composed of thousands of overlapping 

cylinders, with the base of the cylinder scanning the spatial component of the data and the 

height of the cylinder scanning the temporal component. For each window, the expected 

number of cases is compared to the observed number of cases in order to identify where 

clusters might be occurring. The SaTScan output includes a list of all clusters, a list of the 

unique permit identification numbers associated with each cluster, the numbers of 

observed and expected cases, and the p-value for each cluster.   

 The space-time probability model was chosen as the statistical test for this dataset as 

knowledge of both where and when permit clusters occurred is important in understanding 

the progression of recovery (as measured by building reconstruction). Although permits 

are recorded daily, time was aggregated by calendar month in the analysis.  

 

Results  

Time-Space Clusters with Damage Categories 

 Combining SaTScan outputs with GIS visualization techniques begins to illuminate the 

association between building permits’ spatial and temporal locations relative to factors 



 

such as storm damage and number of housing units per tract. The first SaTScan output 

describes significant spatial-temporal clusters of building permits. Seven significant 

clusters were found, with varying spatial and temporal distributions. These clusters are 

displayed with NGA Damage Categories (Figure 3) and Housing Unit Categories (Figure 

4). NGA Damage Classifications are shapefiles of initial damage assessments based on 

remote sensing data gathered by the National Geospatial Institute (Jarmin and Miranda 

2006).  The data is meant to present a quick assessment of the distribution and severity of 

damage following a major disaster event.  

 For building permit analysis, only permit data, including the issue date of the permit and 

its location (latitude, longitude), were used in SaTScan. Additional categorical data, 

including the damage classifications and Census housing data, were not considered in the 

statistical analysis in order to locate the clusters based solely on their spatial and temporal 

characteristics. Therefore the clusters are the same for both analyses. The maps simply 

help visualize where clusters are found relative to damage and housing classes and provide 

a baseline for understanding the drivers behind the pace and distribution of rebuilding.  

 Each cluster identifies an area of higher than expected concentration of building 

permits. The first significant cluster is found within Bay St. Louis in the western portion of 

the study area. The radius of this cluster is 0.37km, and all of the permits were issued in 

May, 2008. SaTScan found 184 cases in this cluster when the expected number of cases 

was only 19. Six other clusters of housing permit allocation were found in the study area as 

well, all of which had a p-value of 0.001.     



 

 The identification of several significant clusters demonstrates that building following 

Hurricane Katrina did not occur evenly through space and time.  It was our hypothesis that 

clusters may be explained, at least in part, by the level of damage experienced in the area 

where the cluster exists. Therefore, each building permit found in the cluster was assigned 

a damage classification as described in the above methodology. The results of this 

association are described in Table 3. Clusters are named by the municipality where they 

are located (while clusters can transcend political boundaries, all of the clusters found in 

this study were contained completely within municipal boundaries) and numbered in 

temporal order from earliest to most recent.   

 The level of damage in an affected area could influence the time when building occurs.  

For example, clusters which are located completely in areas classified as catastrophic 

damage (Long Beach 2 and Long Beach 3) do not occur until 2007, over a year and a half 

after Hurricane Katrina. Conversely, clusters occurring nearer to the time of the storm, 

including Long Beach 1, Bay St. Louis 1, and Pass Christian 1, are concentrated in the 

moderate to limited damage categories. Long Beach 1, a cluster composed of permits 

issued from September 2005-November 2005, is more diverse than the rest of the clusters 

in terms of distribution within different damage classifications, which indicates that in the 

three months following the storm there was rebuilding both within lesser damaged areas 

and catastrophically damaged areas in Long Beach.  

 

FIGURE 3 HERE 

TABLE 3 HERE 



 

Time-Space Clusters with Housing Data 

 The pre-storm housing concentrations were also joined with each building permit by 

census tract to test the hypothesis that more building occurred in areas which had higher 

pre-storm housing concentrations. As seen in Table 4, only the Long Beach 2 cluster is 

composed of permits that land in the housing class with the highest number of housing 

units pre-storm (278-649 housing units per tract). Surprisingly, the tracts with the moderate 

to lower amounts of pre-storm housing tend to contain more of the building permit 

clusters. This may be attributed to the relatively low numbers of high category tracts. There 

are more census tracts that occur within the housing classes 1-3 than classes 4 and 5.  

However, it could be indicative of trends that go beyond simple housing concentrations, 

such as the desire of residents to move away from the hazard zone into areas away from 

the coast.         

 The Long Beach 1 cluster, as with the damage classification, is spatially dispersed 

throughout all housing classes. Building occurred in each housing class in this 

municipality, with the majority of permits found in class 2 (15-57 housing units per tract).  

While in Pass Christian there were portions of building clusters in every housing class 

throughout 2006 (Pass Christian 1 & 2), only the Long Beach 2 cluster occurs completely 

within the highest housing class. Additionally, this cluster does not occur until January 

2007 indicating that, despite having a larger pre-storm population, recovery of the built 

environment in this area experienced barriers to rapid recovery in the year and a half 

directly following the storm.   



 

 Identifying and assessing the statistical significance of the relationships between pre-

event housing and housing permit allocation (like the association between permits and 

damage classification) is outside of the scope of the current study.  However, there do not 

appear to be clear relationships in space or time of building clusters with pre-event housing 

units. Therefore, it cannot be presumed that more rebuilding will occur where there had 

previously been more housing, and a vast number of different underlying physical, social, 

or political trends may be influencing the distribution of rebuilding in time and space.     

 

FIGURE 4 HERE 

TABLE 4 HERE 

 

Space Only Clusters with Damage Categories 

 The same building permit data were assessed again in order to identify purely spatial 

clusters. The ordinal probability model, instead of the space-time scan, was utilized in 

SaTScan. The ordinal model located clusters using only spatial data. In a purely spatial 

scan, the issue date of each permit is not considered in the calculation of the most likely 

clusters. This was done to assess where the highest concentrations of issued permits were 

occurring throughout the entire study period. Additionally, in an ordinal model each permit 

is a case and each case belongs to one of several ordinal categories. For this analysis, those 

ordinal categories were damage classifications (assigned numerical values for statistical 

processing, 1 being limited damage and 4 being catastrophic damage). The model 



 

identifies clusters by searching for an excess of cases, considering damage classification as 

an additional attribute for association (Kulldorff et al. 2005).     

 The model identified six clusters which were significant, with p-values of 0.001. Note 

that the purely spatial clusters are distributed differently than the space-time clusters 

(Figure 5). Note that in Figure 5, Bay St. Louis 2 and Bay St. Louis 3 are presented 

together. They were identified by SaTScan as two distinct clusters, wit Bay St. Louis 2 

existing on the western-most border of Bay St. Louis 3. These clusters are named for the 

municipality in which they are contained and then numbered from west to east since the 

time numbering does not apply for purely spatial clusters.   

 Independent of temporal variations in the allocation of permits there is more clustering 

in areas with moderate or limited damage. Table 5 indicates that only one cluster, Long 

Beach 1, is concentrated completely within the catastrophic damage class, while Bay St. 

Louis 2 and Pass Christian 1 are located completely within the moderate and limited 

damage classes respectively, and Bay St. Louis 1 is approximately 94 percent within the 

moderate damage class.   

 Bay St. Louis 3, which does not resemble the spatial location of any of the clusters in 

the space-time analyses, likely indicates an area which is experiencing a slow and steady 

rate of rebuilding over a longer period of time that was not captured by the space-time 

scan. This cluster is spatially distributed throughout the catastrophic, elevated, and 

moderate damage classes indicating again that it may take longer to rebuild in areas which 

have experienced catastrophic and extensive damage from disaster events. While 

substantial amounts of building may be occurring in this area, they will not be shown in a 



 

space-time cluster because the building is not temporally clustered. This finding points 

toward other underlying socio-economic, demographic, or political factors as impedances 

to long term recovery.  

 

FIGURE 5 HERE 

TABLE 5 HERE 

 

Discussion  

 The application of spatial and temporal clustering analysis on building permit data for 

coastal Mississippi communities provides strong evidence of differential rebuilding across 

the study area. The identification of significant spatial and temporal clusters, using these 

methods, provides a new and novel approach to understanding long term rebuilding from 

disaster events. Additionally, the patterns observed in association with the damage 

categories demonstrate that with further examination the relationship between the levels of 

damage and where and when space-time clusters arise could be understood with greater 

clarity. Since areas within the catastrophic damage class do not completely contain 

building permit clusters until 2007 we can start to look more deeply into how limited 

access to catastrophically damaged areas following the storm could have slowed 

rebuilding. The likely higher amount of debris removal, demolition, and population 

recovery that needed to occur in areas experiencing catastrophic and extensive damage 

could cause rebuilding delays throughout the entire study period. Areas experiencing 

higher levels of damage may also have new building code requirements related to base 



 

flood elevations that could also decrease the number of people who are capable of 

rebuilding within a confined space and time. The lack of clusters in any specific 

geographic area does not indicate that no recovery was occurring in an area, only that it 

was spatially and temporally diffuse (or less than the expected statistical amount of 

recovery). These slower recovery areas could be explained by these and other “obstacles” 

linked to the relative damage.  

 In contrast to our original hypothesis, the majority of building clusters occur in areas 

with fewer housing units. Assuming that the relative distribution of housing units in each 

census tract remained constant between 2000 and 2005, more building is occurring in areas 

which had a smaller number of housing units before the storm. This could suggest trends 

of rebuilding in areas further from the coast that previously had a lower number of housing 

units. Further investigation and more temporally accurate data (2005 housing estimates) 

would provide a more comprehensive explanation of trends seen in the housing category 

data.    

 Additional information from the building permits can provide a more thorough 

understanding of the processes at work along the Mississippi Gulf Coast following 

Hurricane Katrina. As discussed above, only a portion of the available data was used in 

this analysis. Including additional data such as type of work, value of work, and value of 

housing would enable researchers to gain a more precise understanding of not only the 

spatial and temporal clustering of recovery, but also of the specific type of buildings and 

the value of buildings. This information could be linked to underlying data on pre-event 

housing stock, socio-economics, and demographics, providing a glimpse into who and 



 

what is being rebuilt. Additionally, the permits reveal that the types of buildings which 

constitute the clusters are often multi-family homes. The data indicate that the clusters of 

Bay St. Louis 1 & 2, Long Beach 2 & 3, and Pass Christian 2 in the space-time scan of 

building permits (Figures 2 and 3) consist primarily of very closely developed subdivisions  

or a collection of apartment buildings, with each unit requiring a different permit. This 

trend indicates that the largest surges of housing in the shortest amount of time occur when 

efforts are concentrated on large multi-family developments. While multi-family housing, 

which by its nature is denser than single-family homes, may be seen as skewing the spatial 

analysis within SaTScan, clusters dominated by multi-family housing are legitimate 

because a large amount of housing is being built or repaired within a close space-time 

span. Planners and other decision makers needing to find solutions for housing following a 

disaster could benefit from knowing that multi-family developments are an efficient way of 

providing the maximum amount of housing in the shortest amount of time.     

 

Conclusion  

 Recovery is a dynamic and multifaceted process and therefore the spatial and temporal 

scales at which it is measured affect the outcome of these studies. Although there has been 

an increased interest in understanding the dynamics of long-term recovery following 

Hurricane Katrina, it is still under-studied and the mechanisms driving recovery as a 

holistic and interlinked process are not well understood. The major contribution of this 

research is the application of a technique, a spatial scan statistic, and the utilization of 

building permit data to empirically assess locally-based trends in disaster recovery. The 



 

application of this technique demonstrates that space-time clusters of rebuilding during the 

period of recovery following Hurricane Katrina (or any disaster) can be identified and 

analyzed using freely available data and software. Additionally, this research fills a 

significant gap in the current literature by providing a much higher temporal resolution for 

the analysis of the recovery process.  Results indicate that rebuilding following a disaster 

does not occur uniformly; rather it is concentrated at various points in space and time due 

to the influence of underlying event damage and pre-event housing concentration. While 

other studies may have described the unequal distribution of recovery, few have been able 

to quantify exactly where and when a certain type of recovery is taking place.  

 Two of the underlying characteristics that influence the pace and distribution of 

recovery were examined utilizing both SaTScan and ArcGIS software. The amount of 

damage experienced by an area influences the timeliness of rebuilding and how rebuilding 

is spatially distributed. For example, it may take over a year for areas which have 

experienced catastrophic damage to have high levels of rebuilding. Since, even in a purely 

spatial analysis, there are not many spatial clusters within the catastrophically damaged 

areas, we know that either high levels of rebuilding have not occurred in these areas due to 

obstacles and more building will occur in these areas in the future, or that building has 

shifted to areas that did not experience such high levels of damage.  The connection of the 

pace and distribution of rebuilding and the number of houses per tract is less clear. 

However, the finding that more building clusters have occurred in places that had fewer 

housing units pre-storm is counter-intuitive and may indicate shifting trends of 

redevelopment away from the more densely populated and hazardous coast.   



 

 Laben (2002) and others have developed tools that can help track short-term recovery 

and help make decisions about aid distribution.  The method presented in this paper, on the 

other hand, can be used to track the distribution of rebuilding over the long-term and help 

recovery managers and decision makers use information about where and when recovery 

has occurred, to determine how to distribute resources. Similarly, by understanding where 

and when clusters of rebuilding occurred, the drivers and “best practices” of rebuilding can 

be identified and utilized as a model for areas which have not experienced the desired level 

of rebuilding.   

 This research can act as a springboard for future investigations into the relationships 

between the level of damage, pre-event housing densities, and other variables with spatial 

and temporal clusters of rebuilding. In addition to generally increasing the understanding 

of how long-term rebuilding and recovery manifests in space and time, the tools and 

techniques presented are available to most municipal or county building and development 

offices. This method can help planners and long-term recovery managers identify areas 

where rebuilding has been concentrated and help them better understand how to focus and 

distribute their resources.   
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Table 1: Study area, Municipal statistics (American FactFinder, 2000)  

 Total 
Population 

Total Housing 
Units 

Median Household 
Income ($) 

% 
White/Black/Other 

Bay St. Louis 8,209 3,817 34,106 80.2/ 16.6/ 3.2 
Pass Christian 6,579 3,351 40,743 65.9/ 28.2/ 5.9 
Long Beach 17,320 7,203 43,289 87.5/ 7.4/ 5.1 

 

Table 2: Condition of building permit data upon acquisition   

County/Municipality Scanned Digital Standard Format Geo-coded 
Hancock County X    

Waveland  X X  
*Bay St. Louis  X X  

Harrison County X    
*Pass Christian  X X  

*Long Beach  X X  
Gulfport X    

Biloxi   X  X 
Jackson County  X X  

Ocean Springs  X X  
Gautier  X X  

Moss Point X    
Pascagoula  X X  

*municipalities investigated in this paper 

 

Table 3: Percent of permits from each cluster by damage category 

  Catastrophic Extensive Moderate Limited N/A  
Cluster % % % % % Issue Dates 
Long Beach 1 28.83 0 0 50.5 20.5 9/1/05-11/30/05 
Pass Christian 1 2.01 2.58 58.17 24.07 0 2/1/06-10/31/06 
Bay St. Louis 1 0 0 100 0 0 6/1/06-6/30/06 
Pass Christian 2 23.81 0 0 69.05 7.14 10/1/06-10/31/06 
Long Beach 2 100 0 0 0 0 1/1/07-1/31/07 
Long Beach 3 100 0 0 0 0 9/1/07-9/30/07 
Bay St. Louis 2 0 0 100 0 0 5/1/08-5/31/08 
 
 



 

Table 4: Percent of permits from each cluster by housing unit category  
 

  
Class 1 Class 2 Class 3 Class 4 Class 5 

  (0-16) (17-57) (58-134) (135-277) (278-649) 
Cluster % % % % % Issue Dates 
Long Beach 1 16.5 52.49 16.1 7.75 7.16 9/1/05-11/30/05 
Pass Christian 1 0 0 40.97 17.19 41.83 2/1/06-10/31/06 
Bay St. Louis 1 0 100 0 0 0 6/1/06-6/30/06 
Pass Christian 2 30.95 23.81 45.24 0 0 10/1/06-10/31/06 
Long Beach 2 0 0 0 0 100 1/1/07-1/31/07 
Long Beach 3 0 100 0 0 0 9/1/07-9/30/07 
Bay St. Louis 2 0 0 71.74 28.26 0 5/1/08-5/31/08 
 

 

Table 5: Percent of permits from each spatial cluster by damage category 
 

  Catastrophic Extensive Moderate Limited  N/A  
Cluster % % % % % 
Bay St. Louis 1 4.62 0 94.27 0 1.11 
Bay St. Louis 2 0 0 100 0 0 
Bay St. Louis 3 13.48 16.05 67.38 0 3.09 
Pass Christian 1 0 0 0 100 0 
Long Beach 1 100 0 0 0 0 
Long Beach 2 2.99 0.11 1.39 73.32 22.2 
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Figure 1. Coastal Mississippi Study Area 

 



 

Figure 2. Building Permit Types 

a. paper permit – Harrison County; b. scanned permit – Gulfport; c. digital permit – 
Waveland; d. geospatially enabled information – Biloxi  
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Figure 3. Building permit spatial-temporal clusters and damage categories 

 

 

 

 

 



 

Figure 4. Building permit spatial-temporal clusters and number of housing units per tract 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. Building permit purely spatial permits and damage categories  
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