
 1 

        NCAR/TN-490+STR 
NCAR TECHNICAL NOTE 

________________________________________________________________________ 
 

2012-06 
 
 
 

Modeling High-Impact Weather and Climate: Lessons from a 
Tropical Cyclone Perspective 

 
 
 
 

James M Done 
Greg J Holland 
Cindy L Bruyère  
L Ruby Leung 
Asuka Suzuki-Parker 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NCAR Earth System Laboratory 
Mesoscale and Microscale Meteorology Division 

________________________________________________________________________ 
NATIONAL CENTER FOR ATMOSPHERIC RESEARCH 

P. O. Box 3000 
BOULDER, COLORADO 80307-3000  

ISSN Print Edition 2153-2397 
ISSN Electronic Edition 2153-2400 



 2 

 
 
 
 

NCAR TECHNICAL NOTES 
http://www.ucar.edu/library/collections/technotes/technotes.jsp 

 
 
 
 

The Technical Notes series provides an outlet for a variety of NCAR Manuscripts that 
contribute in specialized ways to the body of scientific knowledge but that are not suitable 
for journal, monograph, or book publication.  Reports in this series are issued by the 
NCAR scientific divisions.  Designation symbols for the series include: 
 
   EDD – Engineering, Design, or Development Reports 
   Equipment descriptions, test results, instrumentation, 
   and operating and maintenance manuals. 
 
   IA – Instructional Aids 
   Instruction manuals, bibliographies, film supplements, 
   and other research or instructional aids. 
 
   PPR – Program Progress Reports 
   Field program reports, interim and working reports, 
   survey reports, and plans for experiments. 
 
   PROC – Proceedings 
   Documentation or symposia, colloquia, conferences,  
   workshops, and lectures.  (Distribution may be limited to 
   attendees). 
 
   STR – Scientific and Technical Reports 
   Data compilations, theoretical and numerical   
   investigations, and experimental results. 
 
 
The National Center for Atmospheric Research (NCAR) is operated by the nonprofit 
University Corporation for Atmospheric Research (UCAR) under the sponsorship of the 
National Science Foundation.  Any opinions, findings, conclusions, or recommendations 
expressed in this publication are those of the author(s) and do not necessarily reflect the views 
of the National Science Foundation. 



 3 

     NCAR/TN-490+STR 
NCAR TECHNICAL NOTE 

________________________________________________________________________ 
 
 
 

 
 
Modeling High-Impact Weather and Climate: Lessons from 
a Tropical Cyclone Perspective 
 
 
 
James M Done  
NCAR Earth System Laboratory, Boulder CO, US 
Greg J Holland  
NCAR Earth System Laboratory, Boulder CO, US 
Cindy L Bruyère   
NCAR Earth System Laboratory, Boulder CO, US 
L Ruby Leung  
Pacific Northwest National Laboratory, Richland WA, US 
Asuka Suzuki-Parker 
University of Tsukuba, Tsukuba, Japan. 
 

 
A snapshot of simulated vertically integrated water vapor (mm) using the NCAR Nested Regional 
Climate Model showing easterly waves tracking off the African coast out over the Atlantic and a 
Hurricane in the Gulf of Mexico. 

 
________________________________________________________________________ 

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH 
P. O. Box 3000 

BOULDER, COLORADO 80307-3000



 4 

Table	
  of	
  Contents	
  
1.	
   List of Figures .........................................................................................................4	
  

2.	
   Acknowledgements.................................................................................................5	
  

3.	
   Introduction.............................................................................................................6	
  

4.	
   Global Tropical Cyclone Activity...........................................................................7	
  

5.	
   North American Climate Variability and Change ..................................................9	
  

Domain Size, Location and Horizontal Resolution ...............................................10	
  

Climate Bias...........................................................................................................11	
  

Future Changes in Tropical Cyclone Frequency ...................................................14	
  

Future Changes in Tropical Cyclone Intensity ......................................................16	
  

Internal Variability.................................................................................................17	
  

6.	
   Statistical Assessments .........................................................................................18	
  

Statistical Assessment of Tropical Cyclone Frequency.........................................18	
  

Extreme Value Assessment of Tropical Cyclone Intensity ...................................19	
  

7.	
   Societal and Ecological Impact Assessments .......................................................21	
  

8.	
   Concluding Discussion .........................................................................................22	
  

9.	
   References.............................................................................................................23	
  

 

1. List	
  of	
  Figures	
  	
  
Figure 1: NRCM model domains at 36 km grid spacing (large black box) and 12 km grid spacing 

(small black box). Model terrain height (shaded) is shown at the different model resolutions 
and extends beyond the 36 km domain to indicate the resolution of the NNRP driving data.  

Figure 2: NRCM model domains at 36 km grid spacing (large black box) and 12 km grid spacing 
(small black box). Model terrain height (shaded) is shown at the different model resolutions 
and extends beyond the 36 km domain to indicate the resolution of the driving CCSM.  
Adapted from Done et al (2011b). Copyright 2011 OTC. Reproduced with permission of the 
copyright owner. Further reproduction prohibited without permission. 

Figure 3: Snapshots of example NRCM tropical cyclones in the Gulf of Mexico generated on 
(left) the 36 km grid and (right) the 12 km grid, shown in model derived radar reflectivity 
(dBz).  
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Figure 4: Three-month average vertical shear (200 – 850hPa, ms-1) for the period August-
October 1996 for (a) NRCM driven by raw CCSM data; (b) NRCM driven by revised CCSM 
data; (c) revised CCSM data, and (d) NNRP data. Adapted from Holland et al (2010). 
Copyright 2010 OTC. Reproduced with permission of the copyright owner. Further 
reproduction prohibited without permission. 

Figure 5: Time series of Aug-Sept-Oct average Sea Surface Temperature (SST) averaged over 
the tropical eastern North Atlantic for (black line) observations (Hurrell et al. 2008) and 
(colored lines) CCSM data. Top panel shows raw CCSM data (blue line) and bias-corrected 
CCSM data (green line) using the base period 1975-1994.  Bottom panel shows observations 
(black line) and bias-corrected CCSM data using three different base periods: 1975-1994; 
1955-1974; and 1985-2004. The three lines are indistinguishable.  

Figure 6: Tropical cyclone track density (color shading) and genesis density (contours) 
normalized by the maximum value, for: (a) IBTrACS data, 1975-1995; (b) NRCM 36 km 
domain, current climate; (c) NRCM 36 km domain, 2020-2030; and (d) NRCM 36 km 
domain, 2045-2055. Adapted from Holland et al (2010). Copyright 2010 OTC. Reproduced 
with permission of the copyright owner. Further reproduction prohibited without permission. 

Figure 7: Frequency distributions of tropical cyclone intensity shown in wind speed (ms-1) at 
10m above the surface simulated by NRCM on the 36 km domain for base climate (black 
line), the period 2020-2030 (dark gray), and the period 2045-2055 (light gray). The dashed 
black line is the observed distribution using IBTrACS data for the period 1995-2005.  
Adapted from Holland et al (2010). Copyright 2010 OTC. Reproduced with permission of 
the copyright owner. Further reproduction prohibited without permission. 

Figure 8: Five-year running mean of observed TC storm frequency (black), and that estimated 
from ASO CGI for NNRP (red) and ERA (blue), with dashed trend lines superimposed. 
Reproduced from Bruyere et al (2012). Permission pending from the American 
Meteorological Society. 

Figure 9: Estimated future changes to all hurricanes (green), category 3-5 (yellow), category 4-5 
(red) and category 5 (blue) by applying a Weibull analysis to the truncated distributions in 
Fig. 7, and using a base climate of: left) 1980-1994 and right) 1995-2008. 
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3. Introduction	
  	
  
Society is well into a new era of catastrophes in which natural hazards, particularly weather and 
climate related hazards, are causing more damage than in the past (e.g. Kunreuther and Michel-
Kerjan 2009). In recent years, society has faced a steep rise in economic and insured losses from 
weather and climate related hazards, largely due to significant increase in exposure (Höppe and 
Pielke 2006). Projections of a continuing trend towards more intense systems (see Bender et al. 
2010; Knutson et al. 2010 for the case of tropical cyclones) point to a further increase societal 
vulnerability unless adequate planning and adaptation measures are implemented. More accurate 
information on high-impact events, defined (following Stephenson 2008) as either a short-lived 
intense weather event or an accumulation across a number of weather events in a given time 
period, is thus a critical need of society. This requires assessments of the statistics of high-impact 
events with regional clarity and on how they may change under climate variability and change 
together with estimates of uncertainty. 
 
Meeting these demands requires a combination of dynamical and statistical components. The 
traditional dynamical approach combines the capacity of regional high resolution to simulate 
weather events with the capacity of global coarse resolution to simulate climate by embedding 
high resolution within the global mesh over regions of interest (e.g. Laprise et al. 2008; Knutson 
et al. 2007). Increases in computational capacity have enabled such simulations in unprecedented 
detail (e.g. Bender et al. 2010; Oouchi et al. 2006). Regional high resolution can provide 
trackable weather systems on decadal timescales, physical insights into their variability, physical 
response of weather systems to climate variability and change, and events outside the historical 
range in terms of location and scale. Despite these accomplishments, finite computational 
resources and overwhelming data volumes require considerations of the appropriate balance 
between sufficient detail to resolve the relevant physical processes, sufficiently long simulations 
to adequately sample climatology, and sufficient ensemble size to sample uncertainty. This often 
results in a truncation of the full distribution of high-impact events. Even if regional models 
could capture the full distribution then it may be necessary to treat error in location (e.g. storm 
track bias), error in frequency, and error in parameterized physical mechanisms. 
 
In recognition of the limitations of the dynamical approach, a variety of statistical approaches 
have been explored. Uses of empirical relationships between weather systems and the large-scale 
environment have been successful in determining the weather system climate from coarse 
resolution data (e.g. Camargo et al. 2007). Statistical methods have also been used to post-
process errors in frequency distributions of weather events from dynamical models, as discussed 
in Katz (2010). Although these two approaches add value to the dynamical approach, they are 
limited by the assumption of stationarity in the statistical relationships. Emanuel et al. (2008) 
provides an example of relaxing this assumption by increasing the connection between statistical 
and dynamical modeling components in assessing both tropical cyclone frequency and intensity. 
  
Despite these initial recent developments, meeting the societal demand of assessing high-impact 
events with regional clarity remains extremely challenging. The purpose of this technical report 
is to present an overview of lessons learned over the past six years in modeling high-impact 
events on regional scales. Using the case of tropical cyclones as the archetypal high-impact 
event, the merits and limitations of the dynamical modeling approach are discussed and 
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motivate, by way of illustrative examples, the need for combined dynamical-statistical 
approaches in order to provide credible and useful information. 
 
Tropical cyclones represent a hard test case for simulating high-impact weather owing to their 
rarity in any one given region and highly uncertain future changes. For the North Atlantic, the 
past 15 years has seen activity well above the longer-term average in terms of intensity (Elsner et 
al. 2008) and frequency (Holland and Webster 2007; Vecchi and Knutson. 2008). Future global 
intensity increases are likely and there is model consensus on a decrease in global frequency 
(Knutson et al. 2010), yet changes on the scale of individual basins are far more uncertain with 
large variations between modeling studies (e.g. Knutson et al. 2007, 2010; Bengtsson et al. 2007; 
Oouchi et al. 2006). 
 
The Nested Regional Climate Model (NRCM) is a dynamical downscaling tool designed 
specifically to contribute to assessments of high-impact events in current and future climates, and 
is utilized here to illustrate the current challenges. The next two sections describe simulation 
experiments with the NRCM: Section 4 examines NRCM simulations of global tropical cyclone 
activity in current climate, and Section 5 explores the capacity of the NRCM in limited area 
configuration to model both current and future North Atlantic tropical cyclone activity. These 
experiments are presented to illustrate current limitations and sensitivities of the dynamical 
model approach. The value of complementary statistical approaches is established by way of 
examples in Section 6. Section 7 highlights the importance of directly assessing the impacts of 
extreme events in order to generate information relevant to society. Finally, key findings are 
summarized in the discussion section. 
 

4. Global	
  Tropical	
  Cyclone	
  Activity	
  
In this section, the ability of the NRCM to simulate global tropical cyclone activity is assessed. 
The NRCM is based on the Weather Research and Forecasting (WRF) model (Skamarock et al. 
2008) nested into either a global reanalysis or a global climate model with options selected for 
long-term simulation, as described in Leung et al. (2005) and Done et al. (2011a). Here, results 
are presented from simulations using NRCM configured as a tropical channel model. The NRCM 
is driven by data from the NCEP/NCAR Reanalysis Project (NNRP, Kalnay et al. 1996) at 2.5° 
lat/lon grid spacing at the north and south lateral boundaries (45ºN and 45ºS, as shown in Fig. 1), 
as well as prescribed sea surface temperatures (Hurrell et al. 2008), albedo and vegetation 
fraction at the lower boundary. Model physical parameterizations (described in Done et al. 
2011a) are chosen based on test simulations of seasonal rainfall totals and spatial distributions 
over the maritime continent when compared with Tropical Rainfall Measuring Mission 
Multisatellite Precipitation Analysis data (Huffman et al. 2007). The model is initialized on 1st 
January 2000 and runs though 1st January 2006 using a grid spacing of 36 km and 51 vertical 
levels up to 10hPa. An additional simulation is conducted with a two-way nest at 12 km grid 
spacing over the North Atlantic (Fig. 1) for the period 1st May 2005 through 1st Dec 2005 to 
probe the sensitivity of tropical cyclone simulation to model resolution. No nudging of the 
NRCM to NNRP data is applied in the interior of the domain. The NRCM is free to generate its 
own weather and climate and is constrained only by atmospheric data at the North and South 
boundaries and sea surface temperatures at the lower boundary. 
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Figure 1: NRCM model domains at 36 km grid spacing (large black box) and 12 km grid spacing 
(small black box). Model terrain height (shaded) is shown at the different model resolutions and 
extends beyond the 36 km domain to indicate the resolution of the NNRP driving data. 
 
Tropical cyclones are tracked automatically using the methodology described in Suzuki-Parker 
(2012).  Local minima in surface pressure are first checked for 850hPa vorticity > 10-5s-1 and 
10m wind speed > 17ms-1 within 1º of the surface pressure minima. Next, vortex structure is 
checked for: sum of temperature anomalies at 300-, 500- and 700-hPa > 0K; temperature 
anomaly at 300hPa greater than the temperature anomaly at 850hPa; and, wind speed 
perturbation larger at 850hPa than 300hPa. In addition, the cyclone phase parameters of Hart 
(2003) are checked for B < 10, -VTL > 0 and –VTU > 0. Finally, a 2-day duration criterion is 
imposed. 
 
The NRCM produces a reasonable temporal and spatial distribution of global tropical cyclone 
activity (Suzuki-Parker, 2012) but overproduces the total number by typically 20-30% depending 
on the year compared to observations (using IBTrACS data, Knapp et al. 2010). This bias is in 
part subject to details of the tracking algorithm (Suzuki-Parker, 2012); here the algorithm is not 
tuned to fit a specific model grid spacing to avoid interpreting the results of tuning as model 
skill. Rather, the same criteria are used across all model resolutions and experiments. Tulich et 
al. (2009) suggested that the bias is correlated to generally overactive easterly waves, particularly 
over the Northwest Pacific. Over the tropical North Atlantic, however, further examination 
shows that the easterly waves are generally too weak and dry, contributing to reduced tropical 
cyclogenesis in the eastern Tropical North Atlantic. The 12 km nested domain improves 
simulation of both the number and spatial distribution of tropical cyclones for the North Atlantic, 
with 20 storms at 12 km and 13 storms at 36 km compared to 25 tropical storms in the 
observations (using IBTrACS data, Knapp et al. 2010). Interestingly, at 12 km cyclogenesis 
occurs in the eastern tropical North Atlantic, but not at 36 km, suggesting the importance of local 
high resolution. Caron et al. (2010) and Caron and Jones (2011) noted a similar sensitivity of 
cyclogenesis in the eastern tropical North Atlantic to local resolution but found genesis to occur 
in this region at a grid spacing of 0.3° (approximately 30 km) rather than the higher resolution of 
12 km found to be necessary in this study. This suggests local high resolution is not in itself 
sufficient. Cyclogenesis is influenced by large-scale, resolvable processes, (e.g. Gray 1968) but 
also by mesoscale processes below current model resolution. The multi-scale nature to 
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cyclogenesis is a problem well suited to test emerging dynamical modeling techniques with 
global variable resolution meshes. 
 

5. North	
  American	
  Climate	
  Variability	
  and	
  Change	
  
The capacity of the NRCM to simulate the current and future climate of high-impact weather of 
North America is now examined. The purpose of this section is to assess multi-year simulations 
of high-impact weather at high resolution using limited area domains; to identify the impact of 
domain size and resolution; and to explore and document critical sensitivities to this modeling 
approach. This experience also serves as guidance to determine priorities for further 
development with next generation modeling systems. 
 
Global climate data are provided by Community Climate System Model (CCSM, Collins et al. 
2006) version 3 integrations run under the A2 scenario (IPCC SRES SPM 2001), as submitted to 
the Coupled Model Intercomparison Project 3 (CMIP3, Meehl et al. 2007). The CCSM is a full 
Earth system model, including atmosphere, ocean, cryosphere, biosphere, and land surface. 
These data are then used to drive a NRCM 36 km domain using one-way nesting, which is then 
used to drive a 12 km domain (Fig. 2), again using one-way nesting. One-way nesting is chosen 
to avoid the unknown implications of using two-way nesting and also for the more practical 
reason of running each domain separately and checking the output for reasonable simulation 
prior to further downscaling. The model is run for three periods: a decade of ‘current’ climate 
conditions (1995-2005) referred to hereafter as ‘base climate’, and two future decades of 2020-
2030 and 2045-20551. The time periods are nominal since the driving CCSM model was 
initialized in 1950 with no additional assimilated data. Thus, for example, model interannual and 
multidecadal variations are not expected to match those in the real world, though the historical 
anthropogenic trend associated with greenhouse gases should be captured. All physical 
parameterizations are the same as used for the tropical simulations described in Section 4 (and 
described in Done et al. 2011a). This experiment provides key insights into domain size, 
location, horizontal resolution, climate bias, future changes in tropical cyclone frequency and 
intensity, and internal variability. These are each discussed in the following subsections. 
 

                                                 
1 All NRCM data are held in storage at NCAR and are freely available for community use. The 
only caveat is that this involves several hundred terabytes of model output that require 
sophistication in the handling of large data sets. 
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Figure 2: NRCM model domains at 36 km grid spacing (large black box) and 12 km grid spacing 
(small black box). Model terrain height (shaded) is shown at the different model resolutions and 
extends beyond the 36 km domain to indicate the resolution of the driving CCSM.  Adapted from 
Done et al (2011b). Copyright 2011 OTC. Reproduced with permission of the copyright owner. 
Further reproduction prohibited without permission. 
 

Domain	
  Size,	
  Location	
  and	
  Horizontal	
  Resolution	
  
Domain size and horizontal resolution are key factors for regional climate simulation (Vannitsem 
and Chome 2005; Seth and Giorgi 1998; Seth and Rojas 2003) and tropical cyclone simulation 
(e.g. Landman et al. 2005; Kumar et al. 2011). In the previous section the sensitivity of 
cyclogenesis frequency to resolution was highlighted. Resolution also impacts cyclone structure 
(Fig. 3). At 36 km the simulated cyclone has a simple circular structure whereas at 12 km sub-
system-scale structure emerges in the form of eye-wall asymmetries and spiral rain bands. These 
features have associated signatures in the surface wind fields important for impact assessments. 
Other cyclone characteristics will also be sensitive to model grid spacing including genesis 
mechanism (Kieu and Zhang 2008), eye-wall replacement cycles and rapid intensification (Davis 
et al. 2008), and upscale impacts through vertical redistributions of heat and momentum (as 
discussed in Leung et al. 2006). Caron et al. (2010) and Caron and Jones (2011) found that high 
resolution was also necessary for the intensity of easterly waves and even for accurate 
representation of the large-scale environment over the eastern Atlantic.  
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Figure 3: Snapshots of example NRCM tropical cyclones in the Gulf of Mexico generated on (left) 
the 36 km grid and (right) the 12 km grid, shown in model derived radar reflectivity (dBz).  
 
Advantages of large domains include improved large-scales within the domain interior above 
those in the driving global data (Jones et al. 1995; Laprise et al. 2008) and a reduction in spatial 
spin-up issues by moving the inflow boundary far from the region of interest (Leduc and Laprise 
2009). Critically, the choice of domain size and location must be guided by the need to capture 
regional physical processes (Giorgi and Mearns 1999) not only to assess high-impact weather in 
current climate but also to capture the correct climate response. A domain that is smaller than the 
main external modes of variability is closely coupled to the driving model (somewhat similar to 
nudging), and where small scales are important to these modes, the domain size needs to be 
sufficiently large to enable this upscale interaction to occur. For example, Caron and Jones 
(2011) constructed a domain to capture relationships between Atlantic SSTs, Sahelian rainfall 
and tropical cyclogenesis. Guided by these results, available resources for this study are directed 
to domain size at the expense of run length and ensemble size. The 36 and 12 km domains are 
therefore much larger than North America, our target region, to ensure the majority of 
atmospheric processes that impact the region are handled by the higher resolution model rather 
than the coarser climate model. As a specific example, African easterly waves are not well 
captured by the CCSM simulation (not shown), necessitating the inclusion of the African wave 
source and development region within the 36 km domain. 
 

Climate	
  Bias	
  
Despite the large domain, errors in the lateral and surface boundary conditions can still impact 
the interior domain climate (e.g. Caron and Jones 2011). The NRCM-generated climate is 
significantly biased when driven directly by CCSM data. Anomalously strong large-scale flow at 
upper-levels over the tropical North Atlantic produces strong vertical wind shear, defined as the 
difference in winds between 200- and 850-hPa (Fig. 4a), thereby preventing tropical 
cyclogenesis. Sensitivity studies (not shown) reveal the bias transfers to the NRCM from CCSM, 
in part due to dynamical propagation from the east and west boundaries but mainly due to a 
warm eastern Pacific Ocean SST bias (Large and Danabasoglu 2006). This permanent El Niño-
like condition is considered to be the cause of the high vertical shear in the NRCM over the 
tropical Atlantic through a modified Walker Circulation (e.g. Gray 1984). One solution to biased 
results is to statistically correct the NRCM model output (e.g. Dosio and Paruolo 2011) but here 
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this post-processing approach is not suitable since the biased climate did not generate any 
tropical cyclones at all, thereby necessitating bias correction of the driving CCSM data prior to 
NRCM simulation. 
 

 
Figure 4: Three-month average vertical shear (200 – 850hPa, ms-1) for the period August-October 
1996 for (a) NRCM driven by raw CCSM data; (b) NRCM driven by revised CCSM data; (c) revised 
CCSM data, and (d) NNRP data. Adapted from Holland et al (2010). Copyright 2010 OTC. 
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Reproduced with permission of the copyright owner. Further reproduction prohibited without 
permission. 
 
 
 
A popular approach to assessing regional climate change that implicitly removes bias is the 
pseudo-global-warming approach (Schär et al. 1996; Rasmussen et al. 2011). In this approach, 
reanalysis data is used for current climate and future climate is constructed by adding a 
perturbation, intended to represent the mean climate change, to the reanalysis data. This 
approach assumes no change in variability at the domain boundaries and for small domains will 
constrain the frequency of weather events to current climate only. An alternative bias correction 
technique is used here that allows synoptic and climate variability to change in the future. Six-
hourly CCSM data for the entire simulation (1950-2100) are broken down into an average annual 
cycle plus a perturbation term: 
 

€ 

CCSM = CCSM +CCSM ',         (1)  
 
where CCSM’ varies in time throughout the entire 150-year CCSM simulation period and 
includes both high-frequency variability and climate trends. The average annual cycle is defined 
over a 20-year base period (to smooth out any influence of El Niño) from 1975 to 1994. Twenty 
years may not be sufficient to smooth out influence of multi-decadal variability but is chosen to 
avoid inclusion of any climate trends. Similarly, the 6-hourly NNRP data for 1975-1994 are 
broken down into an average annual cycle plus a perturbation term: 
 

€ 

NNRP = NNRP + NNRP',         (2) 
 
The revised climate data, CCSMR, are then constructed by replacing  in Eq. 1 with  
in Eq. 2: 
 

€ 

CCSMR = NNRP +CCSM ' .         (3) 
 
CCSMR for the entire period (1950-2100) therefore combines a base, seasonally varying climate 
provided by reanalysis data with day-to-day weather, climate variability (e.g. synoptic weather 
systems, ENSO) and climate change provided by CCSM. Equation 3 is applied to variables 
needed to generate the lateral and lower boundary conditions for NRCM; zonal and meridional 
wind, geopotential height, temperature, relative humidity, land and sea surface temperature and 
mean sea level pressure. To illustrate the procedure, the top panel in Fig. 5 shows a comparison 
between Aug-Sept-Oct average SST averaged over the tropical eastern North Atlantic between 
raw and revised CCSM data. The bias removal procedure brings the revised CCSM time series 
up to values within the observational error range for the Hurrell et al. (2008) surface analyses.  
When driven by bias-corrected boundary conditions (shown in Fig. 4c), the NRCM develops 
substantially improved wind shear over the tropical Atlantic (compare Fig. 4b with Fig. 4d). 
Although improvement in shear is only shown here for a single year, it is representative of the 
improvement over all years, and this improvement allows a reasonable simulation of the tropical 
cyclone climate (described later in this section). 
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There may be sensitivity of the revised climate to the choice of the base period arising from non-
stationarity of the bias, but fortunately this is not the case here; as shown in the bottom panel in 
Fig. 5, choosing different base periods results in nearly identical bias corrections over the entire 
simulation period. This increases confidence that the bias will not change substantially in the 
future, though the validity of this assumption needs further consideration. Further justification 
for this approach is provided by Mote et al. (2011), who showed that for assessing changes 
between a current and future period, a biased model for current climate is as valid as an unbiased 
model (In the case here, however, bias correction is necessary primarily to capture tropical 
cyclone activity rather than to improve future predictions). On the other hand, Dosio and Paruolo 
(2011) showed the assumption of constant bias in time may only be appropriate for ensemble 
mean quantities rather than for individual model projections. 
 

 

 
Figure 5: Time series of Aug-Sept-Oct average Sea Surface Temperature (SST) averaged over the 
tropical eastern North Atlantic for (black line) observations (Hurrell et al. 2008) and (colored lines) 
CCSM data. Top panel shows raw CCSM data (blue line) and bias-corrected CCSM data (green 
line) using the base period 1975-1994.  Bottom panel shows observations (black line) and bias-
corrected CCSM data using three different base periods: 1975-1994; 1955-1974; and 1985-2004. 
The three lines are indistinguishable.  
 

Future	
  Changes	
  in	
  Tropical	
  Cyclone	
  Frequency	
  
On the 36 km domain (Fig. 2), and using the same cyclone detection criteria as described in 
Section 4, the NRCM driven by bias corrected CCSM data produces an average of 7.6 North 
Atlantic tropical cyclones annually for base climate. As noted earlier the model base climate 
period 1995-2005 does not relate to 1995-2005 in the real world since CCSM is free running 
from 1950. This introduces ambiguity as to the selection of observational period used for model 
evaluation. The selection of 1975-1994 as base period for the bias correction leads to this being 
one logical choice. In this case the comparative annual number of observed North Atlantic 
tropical cyclones is 8.9 (using IBTrACS data, Knapp et al. 2010). Alternative choices are the 
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average over, say, the recent 50 years (1958-2007) of 10.4, or the current (1995-2005) high 
period of 14.3 cyclones per year. Regardless of the choice of observational period for 
comparison, NRCM appears to underestimate the actual frequency. The frequency is also lower 
than produced by the NRCM when driven by reanalysis data using a channel domain presented 
in section 4, and the relative roles of the change in domain and change in driving data on tropical 
cyclone frequency have yet to be determined. However, the frequency could easily be corrected 
by tuning the detection criteria, but, as noted in Section 4, the detection parameters are 
deliberately frozen at fixed values. Of importance to this study, Suzuki-Parker (2012) showed 
that the future changes in cyclone frequency are not impacted by the choice of detection values 
(see also Done et al. 2011b).  
 
In the next 50 years the NRCM predicts a statistically significant (at 90% using the two-sided 
Student’s t-test) increase in North Atlantic tropical cyclone frequency, with annual numbers 
increasing from 7.6 in the base climate to 8.5 in 2020-2030 and 10.4 in 2045-2055. This implies 
a potential increase of ~37% in North Atlantic tropical cyclone frequency over the next 50 years. 
These results are different from those of other studies, which have tended towards predicting 
small changes and if anything a decrease in overall Atlantic tropical cyclone frequency over 
coming decades (e.g. Knutson et al. 2010; Bengtsson et al. 2007), and serves to highlight the 
large uncertainty in determining changes in high-impact events on regional scales.  
 
The modeled North Atlantic tropical cyclone track and genesis densities on the 36 km domain 
for current climate are quite close to the observed long-term climatology (Fig. 6a,b). The future 
climate prediction exhibits a consistent southeastward shift in track density, from a maximum in 
the mid-Atlantic in base climate, to a low-latitude maximum in 2045-2055 (Fig. 6d). This 
prediction is a continuation of recent trends (Kimberlain and Elsner 1998; Holland and Webster 
2007) and with Wu et al. (2010) who found that a relative increase in eastern Atlantic SSTs leads 
to changes in atmospheric circulation and near-equatorial tropical cyclone activity. 
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Figure 6: Tropical cyclone track density (color shading) and genesis density (contours) 
normalized by the maximum value, for: (a) IBTrACS data, 1975-1995; (b) NRCM 36 km domain, 
current climate; (c) NRCM 36 km domain, 2020-2030; and (d) NRCM 36 km domain, 2045-2055. 
Adapted from Holland et al (2010). Copyright 2010 OTC. Reproduced with permission of the 
copyright owner. Further reproduction prohibited without permission. 
 

Future	
  Changes	
  in	
  Tropical	
  Cyclone	
  Intensity	
  
Modeled tropical cyclone intensity distributions show that the most intense cyclones are weaker 
than observed (Fig. 7). This is a common problem due to the inability of the 12 and 36 km grid to 
resolve the inner core dynamics of a tropical cyclone (e.g. Knutson et al. 2008; Davis et al. 2010; 
Gentry and Lackmann 2010). Note also the related tendency to over-simulate moderate intensity 
systems, which to some extent is due to those storms that would have been more intense being 
held back in this region. Nevertheless, storms on both the 36 and 12 km domains experience a 
modest yet statistically significant (at 99% using the two-sample kolmogorov-smirnov test) 
future increase in mean wind speed of approximately 2 ms-1. Note that this increase is less than 
observational errors in the historical record; meaning current observation systems could not 
detect this change in the mean intensity.  A more marked increase, however, is seen in the 
number and intensity of the most intense hurricanes that can be resolved by the model (Fig. 7). 
This is in agreement with other dynamical modeling and theoretical studies (Henderson-Sellers 
et al. 1998; Knutson et al. 2010). These intensity increases may be due to future large-scale 
environment changes but also to the future southeastward shift of track density (Fig. 6) 
associated with potential changes in the proportion of tropical cyclones developing from easterly 
waves and cyclone track lengths. This is currently being investigated and results will be reported 
in a future study. 



 17 

 
Figure 7: Frequency distributions of tropical cyclone intensity shown in wind speed (ms-1) at 10m 
above the surface simulated by NRCM on the 36 km domain for base climate (black line), the 
period 2020-2030 (dark gray), and the period 2045-2055 (light gray). The dashed black line is the 
observed distribution using IBTrACS data for the period 1995-2005.  Adapted from Holland et al 
(2010). Copyright 2010 OTC. Reproduced with permission of the copyright owner. Further 
reproduction prohibited without permission. 
 

Internal	
  Variability	
  
Uncertainty due to internal variability becomes large for regional scales (Hawkins and Sutton 
2009), and may be particularly acute for high-impact events and in particular for tropical 
cyclones owing to the stochastic nature of mesoscale convective activity. Jourdain et al. (2011) 
showed in a limited area domain modeling study that locally forced internal model variability 
was as important as the externally forced variability due to El Niño Southern Oscillation for 
interannual variability in South Pacific tropical cyclone frequency. Through a small initial 
condition ensemble of 20-year regional climate simulations over the Northwest Pacific Wu et al 
(2012) not only showed significant variability on annual and interannual timescales but also a 
small signal of internal variability of tropical cyclones on decadal timescales. Because of 
computational limitations on large domain, high-resolution simulations, internal variability of 
tropical cyclones on long timescales cannot currently be tested comprehensively with traditional 
dynamical approaches. Ongoing work to estimate internal variability of tropical cyclones using 
short-term initial condition ensembles will be reported in later studies.  
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6. Statistical	
  Assessments	
  
Confidence in the variability and trends of high-impact events obtained through dynamical 
downscaling is limited in part by the relatively short period and small number of events that can 
be simulated. Fortunately, sample size can be increased substantially through statistical 
approaches. Statistical downscaling applies large-scale empirical relationships to coarse-
resolution model simulations to infer characteristics of the high-impact event, such as frequency, 
intensity or scale. Another approach applies extreme-value statistics to fill out the rare, high-
impact tail of the distribution that has been truncated by coarse-resolution simulations.   
 
Such statistical assessments are quick to run and can be applied to multiple coarse-resolution 
simulations, thereby enabling an assessment of consensus between future projections of high-
impact weather. Examples of an empirical and an extreme value approach are used here to 
illustrate the benefits of statistical downscaling. 
 

Statistical	
  Assessment	
  of	
  Tropical	
  Cyclone	
  Frequency	
  
A number of genesis potential indices have been developed to assess the frequency of tropical 
cyclones using empirical relationships with large-scale data taken from reanalysis datasets or 
global model simulations (e.g. Gray 1968, 1984; Emanuel and Nolan 2004; Emanuel et al. 2006). 
Such indices were typically designed to capture the hemispheric seasonal cycle but typically do 
not do well on regional and interannual scales. For example, Menkes et al. (2011) applied four 
genesis potential indices to different reanalysis datasets and found poor reproduction of 
interannual amplitude and phase variability on regional scales. The Emanuel and Nolan (2004) 
index combines low-level vorticity, mid-level relative humidity, potential intensity (a measure of 
the vertical instability of the atmosphere, Emanuel 2000), and vertical wind shear and has been 
used in recent studies (e.g. Camargo et al. 2007). Bruyere et al. (2012) showed that for 
interannual variability and longer-term changes, the relative humidity and vorticity terms 
contribute nothing to the skill, though this could be due to the specific formulation of the index 
rather than having a physical interpretation (a general limitation highlighted by Menkes et al. 
2011). Indeed, Emanuel (2010) posed saturation deficit as an alternative to relative humidity and 
showed good interannual variability on regional scales when compared to other downscaling 
methods. Bruyere et al. had success omitting water vapor entirely by revising the Emanuel and 
Nolan (2004) index and formulating a Cyclone Genesis Index (CGI) to include only potential 
intensity (PI, ms-1) and shear (Vshear, ms-1), defined as the difference between winds at 200- and 
850-hPa: 
 

         (4) 

 
Bruyere et al. also found care needs to be taken when selecting an index averaging area: for the 
North Atlantic, a basin-wide average of CGI was not optimal in explaining total basin cyclone 
frequency, whereas an average taken over the eastern tropical Atlantic (5-20oN, 60-15oW), was 
able to explain 72% of the annual variance of total basin cyclone frequency. Application of the 
CGI over this eastern tropical Atlantic region using two different historical reanalysis datasets 
(NNRP and European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)) shows 
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CGI is also able to reproduce the observed linear trend and multi-decadal variability in observed 
(using IBTrACS, Knapp et al. 2010) tropical cyclone frequency (Bruyere et al. and Fig. 8). 
Suzuki-Parker (2012) applied CGI to the same bias-corrected global data used to drive the 
NRCM simulations and produced results in agreement with the NRCM dynamical results that 
tropical cyclone frequency will increase by between 1 and 3 storms by the mid 21st century. 
 

 
Figure 8: Five-year running mean of observed TC storm frequency (black), and that estimated 
from ASO CGI for NNRP (red) and ERA (blue), with dashed trend lines superimposed. Reproduced 
from Bruyere et al (2012). Permission pending from the American Meteorological Society. 
 

Extreme	
  Value	
  Assessment	
  of	
  Tropical	
  Cyclone	
  Intensity	
  
Current regional climate models do not resolve the most intense cyclones (Holland et al. 2010; 
Knutson et al. 2008). One complimentary approach to assess changes to the most intense 
cyclones from the truncated regional climate simulations is to utilize extreme value statistics 
(Coles 2001; Garrett and Muller 2008). The NRCM-generated cyclone intensity distribution has 
a much sharper decrease in the more intense cyclones than observed and is truncated at 
maximum winds of around 45 ms-1 for tropical cyclones on the 36 km grid (Fig. 7). However, as 
stated earlier the NRCM predicts a shift of the truncated distribution towards more intense 
storms over the next 50 years (Fig. 7). Applications of both the reverse Weibull distribution 
(Frechet 1927; Weibull 1939 hereafter simply Weibull) and the Generalized Pareto Distribution 
(e.g. Embrechts et al. 1997) have been experimented with to assess these associated changes in 
the intense cyclones. The Weibull is used here because of its history of application to modeling 
studies (e.g. Katz and Brown 1992, 1994; Mearns et al. 1984) and because it fits the entire 
distribution and has a bounded upper tail that lends itself to hurricane intensity assessment due to 
its bounded nature (Emanuel 1987; Holland 1997).  
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The Weibull Cumulative Distribution Function (CDF) and Probability Density Function (PDF) 
are: 
 

      (5) 

 
where e is the exponential function. The scale parameter a and the shape parameter b both lie in 
the range (0,∞). b=1 corresponds to the exponential distribution, b=2 the Rayleigh distribution, 
b=3.5 an approximation of the normal distribution. The mean and the variance of the Weibull 
distribution are given by: 
 

         (6) 

 
where Γ is the Gamma function. Thus, a first-order approximation to future changes in tropical 
cyclone extremes can be obtained by first applying the Weibull to current tropical cyclones 
(where x in Eqn. 5 corresponds to cyclone lifetime maximum 10m wind speed, using IBTrACS, 
Knapp et al. 2010) to obtain current shape and scale parameters. Model-resolved future changes 
in the mean and standard deviation of tropical cyclone intensity are then used to estimate 
changes to these current scale and shape parameters and provide an assessment of future full 
intensity distributions. Finally, the changes in probability of various tropical cyclone intensities 
can be calculated from the Weibull exceedence probability: 
 

        (7) 
 
where c is the lower limit of the intensity range of interest (e.g. 69 ms-1 for Cat 5 hurricanes). 
 
The small NRCM-predicted changes in the resolved distribution result in a much greater change 
in the most intense cyclones (Fig. 9). For example, Cat 5 hurricanes are predicted to increase by 
60% from a base climate period of 1980-1994 and by 30% from a base climate period of 1995-
2008. These results are essentially the same as obtained from application of the Generalized 
Pareto Distribution (Suzuki-Parker 2012). The increases are likely to be conservative due to the 
inability of the truncated NRCM distribution to properly define the full changes in mean and 
variance. One method to assess this possible underestimation of the changes is to further 
dynamically downscale the NRCM to a resolution capable of resolving the full intensity 
distribution. Although not attempted here, Bender et al. (2010) took this approach using the 
Geophysical Fluid Dynamics Laboratory operational hurricane model to downscale to a 
resolution that captured the full intensity distribution and showed similar future changes to the 
most intense storms as reported here. This suggests that the statistical correction of the intensity 
distribution is a promising line of research that warrants further exploration, particularly with 
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regard to understanding how the model intensity distribution relates to the observed intensity 
distribution.  
 

 
Figure 9: Estimated future changes to all hurricanes (green), category 3-5 (yellow), category 4-5 
(red) and category 5 (blue) by applying a Weibull analysis to the truncated distributions in Fig. 7, 
and using a base climate of: left) 1980-1994 and right) 1995-2008. 
 
The examples of empirical and extreme value approaches presented here serve to demonstrate 
the high potential of statistical approaches in assessing high-impact events under climate 
variability and change. The field is wide open to develop the concept further by utilizing more 
sophisticated approaches and extensions to couple with societal impact assessments. 
 

7. Societal	
  and	
  Ecological	
  Impact	
  Assessments	
  
The past two decades of regional climate research outputs have largely been exploratory in 
nature and not directly aligned to the requirements of the end user. Exceptions include ensemble 
regional downscaling programs such as the North American Regional Climate Change 
Assessment Program (Mearns et al. 2009), the Coordinated Regional Climate Downscaling 
Experiment (Giorgi et al. 2009), and the bias corrected and statistically downscaled CMIP3 
archive (Maurer et al. 2007) that all aim to serve high resolution climate scenario needs. Recent 
work by Towler et al (2012) went a step further by incorporating NRCM-generated climate 
change data into a risk-based approach to assess ecological impacts and inform conservation 
efforts.  One promising approach to directly relate meteorological data to impacts relevant to 
societal and industry planning is through the use of indices. Indices have proven to be an 
effective communication and decision-making tool through their ability to break the complex 
components down into quite understandable terms, albeit at the loss of some accuracy. One 
widely used tropical cyclone forecast example is the Saffir-Simpson scale (Simpson and Riehl 
1981; Zhang et al. 2007) but this index is not well suited for impact assessments (as discussed in 
Kantha 2006). This has led to several alternative indices that incorporate other tropical cyclone 
variables.  (e.g. Powell and Reinhold 2007; Malmstadt et al. 2009; Kantha 2008). Index 
development is a focus of current active research that aims to incorporate not only 
meteorological inputs but also socio-economic factors as drivers of societal impacts. 
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8. Concluding	
  Discussion	
  
Meeting the societal demand for assessments of variability and change in high-impact weather 
events with regional clarity is a challenge that extends well beyond simply improving climate 
simulations. The documentation of approaches used and lessons learnt in this report is intended 
to promote community discussion and collaboration on best practices in dynamical, statistical, 
and hybrid approaches of assessing weather and climate impacts; the goal being to develop a 
capability for assessing changes to high-impact events on regional scales under climate 
variability and change. Pursuing combinations of dynamical and statistical approaches and the 
development of methods for assessing impacts directly from the statistical/modeling predictions 
appears to be a key route to this progress as summarized below. One key area not mentioned 
here, simply because of lack of progress at this stage is data assimilation. Seasonal to decadal 
predictions require that the starting point is at the correct phase of a range of low-frequency 
climate variability and this requires new approaches to data assimilation.  
 
In closing, key findings are summarized in these five points: 
 
1) Treating bias: Regional climate simulations can be severely affected by biases in the driving 
global climate model, even when large domains are employed. Here, a successful technique has 
been shown to remove such bias in a manner that retains the day-to-day weather, climate 
variability and change components. As climate models improve, there still remains a need to 
treat regional biases (see for example the reduced but remaining Atlantic SST bias in CCSM4 
versus CCSM3 shown by Muñoz et al. 2012).  Further work is required to fully understand the 
implications of such techniques, to assess and remove changes in bias with time, and to develop 
new approaches to bias removal for emerging modeling tools such as regional atmosphere-ocean 
coupled models and global variable resolution meshes.  
   
2) Assessing domain size, location and resolution: Regional climate physical processes and 
thus predictions are highly dependent on the domain size, location and resolution of the limited-
area model. These aspects of model setup need careful consideration in order to capture accurate 
regional climate and high-impact weather.  Experience with NRCM is that the regional domain 
should include those forcings and circulations that directly affect the regional climate over the 
area of interest. Larger is better, but this can only be done at the expense of resolution, 
simulation period, or ensemble size for assessing uncertainty.  Interior nudging has been used in 
some studies to constrain larger scales in the interior domain to those of the global model. This 
may be valid for use with analysis data sets, but it can lead to a false sense of accuracy when 
applied to global climate models.  
 
An important issue not addressed here is that of upscale modification of the global climate by 
mesoscale processes. One approach is to run the regional climate simulation in 2-way interactive 
mode with the global model. But this substantially increases computing time and limited 
experiments using NRCM indicates the impact is more on remote regions than on the local 
region of interest. Promising new directions into elegant variable resolution global models that 
inherently include two-way interaction between regional high resolution and global coarse 
resolution have the potential to overcome some of these restrictions (e.g. Jablonowksi et al. 
2009; Skamarock et al. 2012) though there will still be a requirement to undertake a thorough 
assessment of each downscaling approach (Laprise et al. 2008).  
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Experience with NRCM at different resolutions indicates that higher resolution than is required 
to resolve the key characteristics of the high-impact events may produce little added value and 
may not be an optimal use of resources. Careful assessment of the required resolution for specific 
weather systems of interest is warranted. 
 
3) Assessing simulation uncertainty: Internal stochasticity may be particularly acute for high-
impact events and may mask the forced signal on annual and shorter timescales. Ensemble 
modeling is the obvious approach to identify the signal (see for example Chen and Lin (2011) 
who showed enhanced skill of the ensemble mean over that of individual members in seasonal 
forecasts of tropical cyclone frequency). Unfortunately, ensembles are computationally 
impractical for high resolution, large domain dynamical model simulations and will be for some 
time. A more practical approach is that of ensemble statistical downscaling techniques, either via 
direct application to multiple coarse-resolution simulations or through incorporating a stochastic 
component to the downscaling technique (as discussed in Wilks 2010). 
 
4) Incorporating statistics: The potential of statistical techniques has been highlighted for both 
uncertainty estimation and filling out distributions of high-impact parameters that are only partly 
resolved by dynamical models. Statistical-dynamical approaches have been largely unexplored to 
date, and a comprehensive investigation into their limitations and opportunities is needed. Such 
techniques hold promise as powerful diagnostic tools (see for example, Wood et al. 2004) and 
offer a fertile ground for interdisciplinary collaboration. Moreover, the combined approach has 
potential to increase physical understanding of high-impact events. Future regional climate and 
high-impact weather studies with the NRCM and the next generation Model for Prediction 
Across Scales (Skamarock et al. 2012) will focus on the optimal combination of statistics and 
climate simulations to ensure the best use of available resources.   
 
5) Direct impact assessments. Once the regional climate prediction has been made and the 
uncertainty quantified, there remains a huge gap regarding how this affects society. Use of 
impact indices is a powerful approach that can be applied directly to model output for both 
current and future scenarios.  Impact indices also serve as highly effective, as well as a “two-
way” communication mechanism, as an index developed on current data provides an excellent 
assessment of the parameters that need to be given priority in the statistical-dynamical modeling 
prediction process. There remains a need for detailed assessments, particularly of critical 
locations, and there is large potential for the development of more sophisticated, targeted 
approaches for a wide range of applications, e.g. ecology, industry, public planning, and society. 
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