File Attachment #105 A Path Analysis of PTSD among Ukrainian residents of Kiev and Zhytomyr Oblasts after Chornobyl (Hypotheses 3, 4, 6, 8, 12, 16, 20, 24)

30 September 2012

DRU: Modeling Nuclear Disaster Risk: The Effects of Perceived Risk and Radiation Exposure on Post-Chornobyl Psychosocial and Health Behavior Outcomes on Ukrainian Residents......NSF GRANT #082 6983

Contents

1	Ack	nowled	lgements	4
2	Intr	oducti	on	5
3	Pat	h analy	ysis	5
4	Ass	umptio	ons and Model structure	6
5	Lim	itation	s of path models	7
6	Mo	del inp	ut qualification	9
7	Mo	del est	imation	9
8	Mal	le mod	el variables	9
9	Ma l 9.1		D path model effects on Chornobyl PTSD among males	11 19 19
		9.1.2 9.1.3	Hypothesis 4: Direct dose effects on mental health as measured by the Brief Symptom Inventory	32
		9.1.4 9.1.5	as measured by BSI scales	32 32
	9.2		measured illnesses	32 33
	0.2	9.2.1 9.2.2	Indirect effects originating with cumulative external dose Indirect effects originating with perceived risk of exposure	33 33
	9.3	9.2.3	Major indirect effects on male PTSD effects addenda on male PTSD	43 43 43
		9.3.2	Hypothesis 3 addendum: Total effects of cumulative external dose on male PTSD	44
		9.3.3	Hypothesis 4 addendum: Total effects of cumulative dose on male mental health measured by BSI	44
		9.3.4	Hypothesis 5 addendum: Total effects of perceived risk on BSI measures of mental health	45
		9.3.5	Hypothesis 6 addendum: Total effects of perceived risk	
		9.3.6	summary score on male Chornobyl PTSD	45
		9.3.7	on Nottingham health measures	45 45

0 Fem	ale PTSD path model	57
10.1	New variables	59
10.2	Model goodness of fit	59
10.3	Model stability and cyclical dynamics	59
10.4	Direct external dose effects for females	65
	10.4.1 Hypothesis 3 Dose-PTSD tests	65
	10.4.2 Hypothesis 4: Direct dose BSI mental health effects	65
	10.4.3 Hypothesis 5: Direct perceived risk of exposure and BSI	
	mental health measures for females	65
	10.4.4 Hypothesis 6 Perceived risk - PTSD tests	65
	10.4.5 Hypothesis 8: Direct effects of perceived risk to Notting-	
	ham health measures	66
	10.4.6 Hypothesis 12 Radiation directly explains/predicts sub-	
	stance abuse	66
	10.4.7 Hypothesis 16 Perceived risk of exposure explaining/predicting	g
	substance abuse	66
	10.4.8 Predominant direct effects on PTSD among women	67
10.5	Indirect effects for females	76
	10.5.1 Hypothesis 3 addendum: Indirect external dose effects on	
	females	76
	10.5.2 Hypothesis 4 addendum: Indirect external dose effects on	
	female BSI	76
	10.5.3 Hypothesis 5 addendum:Indirect perceived risk dose ef-	
	fects on female BSI mental health	77
	10.5.4 Hypothesis 6 addendum: Indirect perceived risk effects on	
	female PTSD	77
	10.5.5 Hypothesis 20: Do Nottingham health measures mediate	
	a radiation effect on substance abuse?	77
	10.5.6 Hypothesis 24: Do Nottingham health measures mediate	
	a perceived risk impact on substance abuse?	78
10.6	Total effects on Chornobyl PTSD among females	88
	10.6.1 Hypothesis 3: The total effect of exposure on females	88
	10.6.2 Hypothesis 4: Total effect of exposure on BSI mental health	
	10.6.3 Hypothesis 6: The total effect of perceived risk	-
	explaining/predicting PTSD	89
	10.6.4 Hypothesis 12: The total effect of exposure on substance	
	abuse	89
	10.6.5 Hypothesis 16: The total effect of perceived risk of expo-	-
	sure and substance abuse	89
10.7	Cyclical contribution to persistence	99
10.1	10.7.1 Wave 3 self-reported depression - anxiety cycle	99
		101
10.8	Hypothesis recapitulation	
10.0	10.8.1 Hypothesis 20: Nottingham health mediates a dose-substance	
	abuse relationship	
	and telanoninp	.00

	10.8.2 Hypothesis 24: Nottingham health mediates a perceived risk -substance abuse relationship	104
11 Dire	ections for future research	105
List	of Figures	
1	Pathways to PTSD among male respondents	13
2	Cyclical decay Depressive-PTSD wave 2 feedback	47
3	Decay rate of total effects in BSI anxiety and Nottinham energy	
	level feedback	47
4	Pathways to PTSD among females residents of Kiev and Zhito-	
	myr Oblasts	58
5	Wave 3 Depression anxiety cyclical decay among women	100
6	Wave 3 Feedback of depression- anxiety total effects cyclical decay	
	among women	101
7	Undulating decay of Anxiety-PTSD feedback cycle among women	102

List of Tables

1	Related files	4
2	Variable index for the male PTSD model	12
3	Pathways to Male Chornobyl PTSD	15
4	Clustered-robust standardized Direct effects among males	21
5	Clustered-robust standardized Indirect effects among males	34
6	Clustered-robust standardized Total effects among males	48
7	PTSD path model for female respondents	60
8	Clustered-robust direct effects for Female PTSD model	68
9	Clustered-robust indirect effects for female PTSD	79
10	Clustered-robust total effects for Female PTSD model	91
11	Hypothesis Direct effect test result summary table	103
12	Indirect effect hypothesis test result summary table	105

1 Acknowledgements

This project has been funded by National Science Foundation HSD grant 08262983, and to them we remain deeply grateful. We are also grateful to the developers of Stata in College Station, Texas, Salford Systems, Inc. in San Diego, California, and AutoMetrics in Oxford, London for the software they have developed and which we are using. We are also grateful to Ben Jann of ETH in Switzerland for his development of the estout.ado program which allows us to format our output so neatly. We are grateful for invaluable data management

Table 1: Related files

File Type	Name	Version	Gender
dofile	recomputingsubabuse.do	10	both
dofile	cycles2.do	10	male
sembuilder	H3H6PTSDmaleV10.stsem	10	male
sembuilder	H3H6PTSDfemV10.stsem	10	female
fig	depptsdcycle.pdf	10	male
fig	anxELcycle2.pdf	10	male
output	H3H6malePTSDV10.smcl	10	male
output	H3H6H12H18H20H24PTSDfemV10.smcl	10	female
pathdiags	H3H6malePTSDV10pd.pdf	10	male
pathdiags	H3H3femPGTSDV10pd.pdf	10	female
report	H3H6pathanalysisPTSDV10.tex	10	both
data	chwide5sep2012.dta	10	both

2 Introduction

In this analysis we examine some plausible causal etiological paths of PTSD, BSI mental health, and Nottingham health profile scales among residents of Zhitomyr and Kiev Oblasts since Chornobyl. We base this analysis on a full-information maximum likelihood model, focusing on omnibus measures of fit, as well as statistically significant paths, broken down into direct, indirect, and total effects. We employ path analysis to identify direct effects, mediating variables among indirect effects, and the magnitudes and types of total effects. The path analysis permits us to decompose total into direct, indirect, and total effects. In the previous section on our path analysis of depression, we introduced the nomenclature we use and the basis for path analysis. In our presentation of the models we generate both conventional and robust models. Although we graph the conventional model, we rely on robust standard errors for our hypothesis testing, because our longitudinal path models cover multiple periods of time, with likely inter-wave autocorrelation and heteroskedasticity.

To guide the reader, we refer to a supporting table and sometimes a page number. If other material has been inserted since writing that reference, the material referred to may be pushed back page or two. Therefore page number referrals are approximate rather than precise but are helpful nonetheless to guide the reader to the area of referral.

3 Path analysis

Although the focus of this paper is to examine PTSD and develop a model for post-nuclear PTSD, other issues are also addressed. Hypothesis 3 postulates that radiation dose directly predicts post-traumatic stress disorder (PTSD) symptoms Hypothesis 4 submits that radiation dose directly predicts mental health as measured by the BSI. Hypothesis 5 suggests that perceived risk of exposure predicts mental as measured by the BSI. Hypothesis 6 posits perceived risk of exposure directly predicting Chornobyl PTSD. Moreover, hypothesis 8 maintains that perceived risk of exposure directly explains self-reported illnesses as measured by the Nottingham health Scale. The meaning of direct in this context refers to a direct effect in a path model. We will examine these two hypotheses with path models for men and women separately. By decomposing the effects into direct, indirect, and total, we will endeavor to ascertain the extent to which direct effects can explain or predict Chornobyl PTSD symptoms.

We use standardized scales where available and especially where different metrics are used in the computation of an estimate. In cases involving recollection of past situations, where standardized scales were not available, we use self-reported depression (depww1, depww2, depww3) for waves 1, 2, and 3, respectively to compare with the BSI depression scale. Similarly, we use self-reported anxiety (anxww1, anxww2, and anxww3) to compare with BSI anxiety. For self-reported PTSD symptoms, we use (ptsdww1, ptsdww2, and ptsdww3) to represent waves 1, 2, and 3 self-reports to compare with the Mississippi civil-

ian revised scale for the current estimates of PTSD, we measure Chornobyl PTSD symptoms with the revised civilian version of the Mississippi Chornobyl PTSD scale (MiPTSD). This Chornobyl PTSD scale is meant to properly apply only to more or less current application, unlike the previous self-expressed PTSD symptoms.

We measure reconstructed external radiation dose with the cumulative external dose in milliGrays. These variables are respectively called cumdose1, cumdose2, and cumdose3. We also measure perceived risk of exposure by a factor score of three variables—the percent to which you believe your health has been affected by Chornobyl, the extent to which your believe your family's health has been affected by Chornobyl, and the percent to which you believe that the number of cancer cases in Zhitomyr and Kiev Oblasts are due to Chornobyl. With alpha reliabilities extending upwards of 0.726 for wave 1, 0.822 for wave 2, and 0.834 for wave three, we proceed to use these scale scores as measures of perceived risk of exposure. These variables are crhtw1, crhtw2, and crhtw3, predecessors of and identical to crhrw1, crhrw2, and crhrw3, respectively.

Model building with full-information maximum likelihood can be complex with large models. Model building entails testing sundry plausible alternative paths between variables and pruning out paths that appear to be not statistically significant. Because changing one path can change all paths, model fitting is done on the basis of a global fit index. When the model comprising significant paths is not inconsistent with the data, the likelihood ratio χ^2 for the number of degrees of freedom identifying those paths minus the constraints, will no longer be statistically significant. A model may not unique. Depending on the variables in the model, it is possible for several combinations of paths to provide a fit. The one that offers the best fit is usually deemed the optimal model, if the paths correspond to theoretical reality. However, such model building usually proceeds non-optimally from specific-to-general.

At the end of the analysis we summarize the findings of our hypothesis testing in two tables— one for direct effects and another for indirect effects discovered to facilitate a review.

4 Assumptions and Model structure

We rely on the same assumptions and model structure explained in our Hypothesis 4 and 5 discussion on path models.

Path models generally assume unidirectional causality, unless arrows from two variables point to one another, in which case, the model assumes that the index of stability is less than one. In short, there is no reverse causality. If is a feedback loop in the presumed causal structure, the model must be identified for the parameters to be uniquely estimable. Moreover, the feedback generally occurs during the same wave in these models. In general, the arrow of time in the path diagram goes from left to right. Although previous times may impact events at later times, time travel limitations preclude impacts from the future, rational expectations notwithstanding, especially when waves are comprised of

extended periods of time.

We should add however that path analysis assumes a closed system, that all of the relevant variables are in the model. If this assumption is unrealistic, it nonetheless is so if the model is to be valid. As Maxine Singer once said in an address to the National Academy of Sciences, there are several kinds of unknowns: If there is a missing variable, it could be an antecedent variable between two of the key variables in the model, which could generate a spurious relationship on which much of the model is then based. I that case, a large portion of the model could be predicted on a spurious basis, leading to all kind of erroneous conclusions. Specification error or omitted variable bias can propagate other biases throughout a model. Nevertheless, we have to assume that this model comprises a closed system, without other variables that could generate a spurious relationship between the exogenous variable and other endogenous variables, or even between the endogenous variables within the model.

5 Limitations of path models

Structural equation models are designed to distinguish direct from indirect effects but they are not always optimal for variable selection among a large pool of candidate variables. Unless the paths have a strong signal/noise ratio, models may rapidly become fragile and intractable if too many variables are entered. Ideally, we should have about 15 variables in our structural equation models if our sample size = 360, according to the Joreskog Sorbom formula for sample size in structural equation models $(n = 1.5p + 1.5p^2)$, where p = the number of variables in the model) [7, 2-8]. This requirement would keep the number of variables in the model below 15 level with our gender-specific data. To omit important variables, however, could lead to a biased and potentially spurious solution. To avoid such specification error, we include a regression of the exogenous variable upon potential antecedent variables. If there is no relationship shown in this regression, it is unlikely that the explanatory variables in the supplementary regression could serve as a cause common to the exogenous and other variables in the model. After fitting the model, we used clustered robust standard error estimates to control for heteroskedasticity and serial correlation between waves. To help confirm that we have not omitted important variables, we added a supplementary regression analysis to determine whether other important related variables were related that were not included.

If variables are not in the model, they are in the error term. If omitted variables are correlated with explanatory variables in the model, specification error can bias the parameters and significance levels of the included variables. The better models control for all relevant variables. When models contain a small fraction of the relevant variables, it is likely to be susceptible to omitted variable bias.

Structural equation models are not necessarily unique models. However, the fact that several different combinations of variables may provide a fit of the data does not mean that this fit is optimal and the best of all possible possible

combinations of paths.

Models are merely rough approximations of evolving reality. The more variables in the model, the more variegated and comprehensive the information set must be upon which they are conditioned. Assuming additivity and linearity may limit our models too much. We make such assumptions at the risk of blinding ourselves to other processes at work.

We are aware of these knowns. As Maxine Singer has warned in her "Thoughts of a Nonmillenarean", an address to the American Academy of Arts and Sciences, in 1997. We may have known unknowns. But it is the unknown unknowns that may render the future highly unforeseeable. It is the unknown unknowns that are the most dangerous. Those are the variables that are inadvertently omitted from our model that should be in the model. As Donald Rumsfeld was wont to warn, those are the things we must protect against.

Robert Lucas in 1976 complained that econometric models lacked deep structure and were the products of policy decisions that would change the rule of the game by which the models, which did not depend upon deep structure, would no longer be valid [9, 1]. Christopher Sims, in his article, Macroeconomics and Reality (1980), claimed that these models do not allow the data to properly express themselves by testing a large number of dynamic variables likely to interact at once. He echoed Lucas's complaint that the constraints imposed by simultaneous equation models were often artificial and unrealistic. He advocated a Bayesian vector autoregression would provide a more realistic framework from which to develop models [10]. We will ultimately use an exploratory vector autoregression analysis as one of our time series models, before moving to a more robust state space model.

These models do not permit the optimal general-to-specific modeling strategy advocated by the Hendry and Richard (1982). For these among other reasons, dependent upon the theory of reduction, one should not rely solely on overly simplified models but should proceed from general-to-specific in the modeling procedure [5, 358]. George Box wrote that all models are wrong, but some are useful. If that is true, oversimplification would be one way to predispose the model to be less likely to be reliable. For this reason, we will attempt a general to specific regression analysis and then test any variables we could not include with supplementary or auxiliary analysis.

We run a supplementary regression check for potential antecedent variables, with a view toward identifying possible antecedent variables that could bias the relationships on which we focus via providing a common cause.

We assume that our variable are measured without too much measurement error. For example, we tried to construct a latent variable for the perceived Chornobyl related health risk and found that the structure did not withstand its evolution over time. Our other key organizing variable was a dose reconstruction of external exposure which was performed according to state of the art dose reconstruction measures. For us to test all of the variables we wanted to within one model over three waves of time, we found that the latent variable models did not provide the optimal value added, given our variable limitations as prescribed by Joreskog and Sorbom. Therefore we relied primarily on path analysis of

observed variables via structural equation modeling for this purpose.

6 Model input qualification

We have a variable, called <code>injselfr</code>, which is a binary indicator of whether a respondent was injured as a result of the Chornobyl disaster. We attempted to generate polyserial correlations for part of the input to the program, but when paired with other variables, missing values in one of the two categories prevented computation of that correlation coefficient. The resulting matrix was non-positive definite. With a small model we might have been able to generate those correlations, but with a large number of variables in a model, a few of the polyserial correlations could not be computed, leaving us with a non-positive definite covariance matrix, and a computational <code>cul-de-sac</code>. Therefore, we made a working assumption that the differences between conventional estimates and those that we would have obtained had we been able to substitute the polyserial correlations for the appropriate pairs of variables were not going yield substantially different results and proceeded with the standard maximum likelihood estimation using that variable, along with the others, which were not binary in coding.

7 Model estimation

We had originally planned on estimating our models with OLS or two-stage least squares (TSLS). However, we use maximum likelihood estimation where we can rather than two stage least squares (TSLS) for several reasons. Although TSLS may outperform ML in small samples, we have large samples in our analysis. Although TSLS estimation is not unbiased in finite samples, it is consistent. Maximum likelihood estimation is also biased for finite samples, but is preferred because it is consistent, invariant to reparameterization, computable, asymptotically normal, as well as asymptotically more efficient because it uses all of the information available. ML can outperform TSLS in obtaining asymptotically efficient estimates and can also be used for nonlinear applications if observations are independent and identically distributed as well as asymptotically symmetric, as long as they are not on the boundaries of the parameter space [1, 108], [3, 245-247,253-258]. More importantly if there are autoregressive errors in the model, which are common with repeated measures, ML can provide an estimate that is stationary [3, 347], which in this case is necessary.

8 Male model variables

Before elaborately explaining this process, it behooves us to review the names of the variables we use in this model. Table 2 presents a variable list of those variables contained in the male model below. Figure 1 is a path diagram illustrating the relationships among variable in male respondents, and then in Table

3, we present the model output for that diagram. We will turn to the analysis of the female respondents afterward.

The male model analysis is organize as follows: In Figure 1 illustrates the paths that were found be be statistically significantly interrelated. Table 2 lists the variables used in Figure 1 and in our model, while and Table 3 presents the non-robust parameter estimates effects. Table 4, 5, and 6 present direct effects, the sum of the indirect effects, and the total effects. Tables 7 and 8 present supplementary analysis.

Now we turn to an explanation of the path diagram and then to a development of the discussion of constitutes the relative magnitudes of the direct and indirect and total pathways of Chornobyl related health risk leading to clinical anxiety. Then we examine the total effects with respect to hypotheses 3 and 6, by which these hypotheses are tested.

9 Male PTSD path model

Figure 1 is color coded to aid interpretation of the paths. Cumulative external radiation dose have blue fill and red arrows emanating from them. Chornobyl related health risk variables are white boxes with purple border and purple arrows emanating from them. Injury of oneself from Chornobyl is designated by a red box bordered with forest green. The arrows emanating it are also forest green. A catastrophic experience in 1986 is designated by a white box with olive arrows projected from it. Self-reported anxiety symptoms and BSI anxiety are represented by dark orange boxes with dark orange arrows stemming from them. Self-reported PTSD symptoms in different waves are signified by light khaki colored boxes with maroon borders and arrows projecting from them. The civilian revised Mississippi PTSD scale is depicted by a sand-colored box with a maroon arrow coming from it. Self-reported depressive symptoms are symbolized by blue boxes with medium blue arrows extending from them. Fear of consuming contaminated food are indicated by red boxes with black borders and arrows. The Nottingham weighted health profile sleep measure is designated by a lime colored box with a green borders and arrows, whereas the Nottingham energy level scale is shown by a cyan box with cyan arrows stemming from it. The BSI depression box is symbolized by a light blue-gray box with a black border and dark blue arrows extending from it. Correlations with double-headed arrows are color coded according to the variables they connect. The color coding helps the reader distinguish one arrow from another. The path diagram in Figure 1 illustrates statistically significant paths discovered and elaborated in Table 3, where the reader can find detailed supporting information.

We will examine this model from several perspectives. We begin our discussion by addressing some basic omnibus characteristics of the model, relating to its goodness of fit and its stability as a dynamic model. We then address the model in relation to hypothesis 3, which postulates that radiation directly predicts Chornobyl PTSD. Next, we turn to a discussion of it in relation to hypothesis 6, which submits that perceived exposure risk directly predicts Chornobyl PTSD. It should be noted that we also show connections between PTSD and some of the BSI scales of psychological health—in this case, those for anxiety and depression (Hypothesis 4 and 5). Moreover, show how these are related to scales of health behavior — including energy level and sleep (hypothesis 8). We not only discuss a strict interpretation of these hypotheses, but a broader one as well, where we consider indirect and total effects.

We see that the model fits the data well. The model is fitted with conventional standard errors, for goodness of fit statistics are not available for robust models. Once the model is fit and the goodness of fit criteria are satisfied, we proceed to compute the robust estimates which control for heteroskedasticity and serial correlation. We take the standardized version of those and assess the paths with this version. After the model is fit, there appears to be no statistically significant difference between the global model and the data (Likelihood ratio χ^2 , = 206.15, df = 187, $p > \chi^2$ =.1604). If we examine the model closely, we observe several feedback loops. One of these exists between self-reported de-

Table 2: Variable index for the male PTSD model

variable name	type	format	variable label
crhrw1	float	%9.0g	Chornobyl related health risk: wave 1 alpha = .796
crhrw2	float	%9.0g	Chornobyl related health risk: wave 2 alpha = .822
crhrw3	float	%9.0g	Chornobyl related health risk: wave 3 alpha = .834
airw1	byte	%8.0g	consider hazardous (in percent) - air and water pollution in 1986
airw2	byte	%8.0g	consider hazardous (in percent) - air and water pollution in 1996
airw3	byte	%8.0g	consider hazardous (in percent) - air and water pollution NOW
depww1	byte	%9.0g	Depression aggregated to wave 1 in 1986
depww2	double	· ·	Depression aggregated to wave 2: 1987 thru 1996
depww3	double	_	Depression aggregated to wave three:1997 thru 2009
anxww1	byte	%9.0g	Average Anxiety level for wave 1
anxww2	double		Average Anxiety level for wave 2
anxww3	double		Average Anxiety level for wave 3
injselfr	byte	%9.0g	Were u injured because of the Chornobyl accident in 1986?
BSIdep	byte	%9.0g	Brief symptom inventory depression subscale score
BSIanx	byte	%9.0g	Brief symptom inventory anxiety subscale score
ptsdww1	byte	%9.0g	Average PTSD level in percent in wave 1
ptsdww2		e %9.0g	Average PTSD level in percent in wave 2
ptsdww3		e %9.0g	Average PTSD level in percent in wave 3
MiPTSD	byte	%9.0g	Mississippi post-traumatic stress disorder scale
cataw1	byte	%8.0g	Total number of disasters experienced in time period 1976-1986
cumdose1	float	%9.0g	cumulative external dose in mGys in wave 1
cumdose2	float	%9.0g	cumulative external dose in mGys in wave 2
cumdose3	float	%9.0g	cumulative external dose in mGys in wave 3
fdferw1	byte	%8.0g	 Level (in %) of fear of eating radioactively contaminated food in 1986
fdferw2	byte	%8.0g	* Level (in %) of fear of eating radioactively contaminated food in 1987-1996
whpel	float	%9.0g	Weighted Health profile Energy level subscale
whpsleep	float	%9.0g	Weighted Health profile sleep subscale

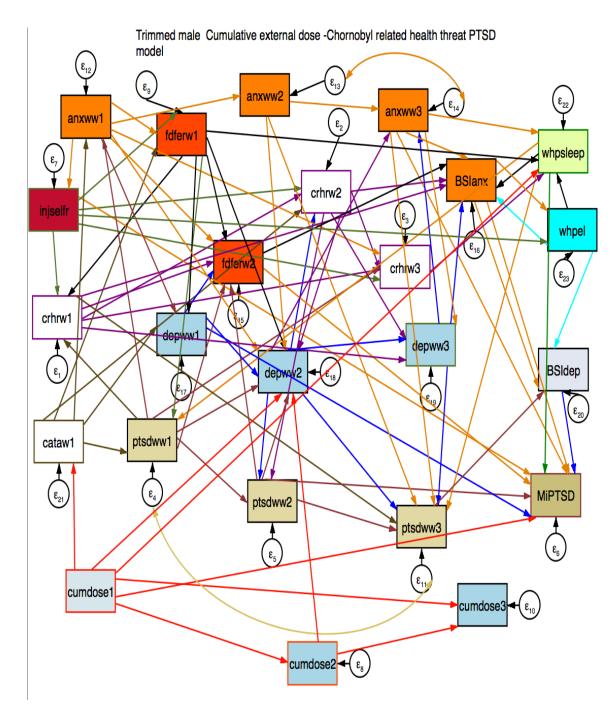


Figure 1: Pathways to PTSD among male respondents

pression and self-reported PTSD in wave 2. Another exists between energy level and BSI depression at the current time. Because the model is non-recursive, we have to test the stability by computing the stability index. We find that it is to equal 0.5776. Because the stability index is less than unity, the model, including its reciprocal path, satisfies the condition of stability (stationarity) for the model. We will examine these feedback loops later in our model analysis. Meanwhile, we can say that having assessed the global model characteristics, we can now examine the nature of the paths to test the relevant hypotheses, and we can now turn to the hypothesis testing of direct effects.

Table 3: Pathways to Male Chornobyl PTSD

Endogenous variables

Observed: crhrw1 crhrw2 crhrw3 ptsdww3 fdferw2 BSIanx depww3 ptsdww2 depww2 whpsleep ptsdww1 anxww1 MiPTSD injselfr fdferw1 whpel cumdose2

cumdose3 cataw1 depww1 BSIdep anxww2 anxww3

Exogenous variables Observed: cumdose1

Structural equation model Number of obs 339

Estimation method = ml Log likelihood = -23415.919

		MIO				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Structural						
crhrw1 <-						
ptsdww1	.0045018	.0014392	3.13	0.002	.001681	.0073225
injselfr	.5020761	.0928184	5.41	0.000	.3201553	. 6839969
fdferw1	.0048078	.0014291	3.36	0.001	.0020069	.0076087
_cons	661096	.0650532	-10.16	0.000	788598	5335941
crhrw2 <-						
crhrw1	.7450444	.032466	22.95	0.000	.6814123	.8086766
depww2	.012571	.0017731	7.09	0.000	.0090957	.0160462
injselfr	.2177233	.0593148	3.67	0.000	.1014685	.3339781
cataw1	1334146	.0653162	-2.04	0.041	261432	0053972
_cons	2619215	.0452184	-5.79	0.000	3505478	1732951
crhrw3 <-						
crhrw1	1070087	.0255132	-4.19	0.000	1570136	0570038
crhrw2	1.021274	.0260639	39.18	0.000	.9701898	1.072358
ptsdww1	0018245	.0005099	-3.58	0.000	0028239	000825
anxww1	.0022437	.0005328	4.21	0.000	.0011996	.0032879
injselfr	.0585597	.0309452	1.89	0.058	0020918	.1192113
_cons	0506579	.0226067	-2.24	0.025	0949663	0063496
ptsdww3 <-						
crhrw1	1.039555	.4111063	2.53	0.011	.2338015	1.845309
depww3	.1190431	.037713	3.16	0.002	.045127	. 1929592
ptsdww2	.7233475	.0339555	21.30	0.000	.6567959	.7898991
depww2	1819267	.0351853	-5.17	0.000	2508885	1129648
whpsleep	.0275381	.0154885	1.78	0.075	0028188	.0578949
anxww2	1094051	.0405685	-2.70	0.007	188918	0298922
anxww3	.2094263	.0436451	4.80	0.000	.1238835	. 2949691
_cons	.5519891	.4738928	1.16	0.244	3768237	1.480802
fdferw2 <-						
crhrw1	2.542799	1.218447	2.09	0.037	.1546863	4.930912
ptsdww2	.6243222	.0910153	6.86	0.000	.4459355	.802709
ptsdww1	.093147	.0403175	2.31	0.021	.0141261	.1721679
anxww1	1093691	.0433707	-2.52	0.012	1943741	0243641
fdferw1	.3405319	.0351849	9.68	0.000	.2715707	.409493
depww1	.114398	.0455868	2.51	0.012	.0250496	.2037464
_cons	1.167934	1.438682	0.81	0.417	-1.65183	3.987698

Table 2 continued...

		OIM				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval
BSIanx <-						
crhrw1	5979033	.2900982	-2.06	0.039	-1.166485	029321
crhrw2	1.058404	.3146654	3.36	0.001	.4416709	1.67513
fdferw2	.0222219	.005887	3.77	0.000	.0106836	.033760
depww3	.0594739	.0144373	4.12	0.000	.0311774	.087770
${\tt whpsleep}$.0451556	.009703	4.65	0.000	.0261381	.064173
whpel	038012	.0123689	-3.07	0.002	0622545	013769
anxww3	035189	.0130462	-2.70	0.007	0607591	00961
_cons	7.237867	.2852022	25.38	0.000	6.678881	7.79685
depww3 <-						
crhrw1	-6.734748	1.069015	-6.30	0.000	-8.82998	-4.63951
crhrw2	7.782119	1.173673	6.63	0.000	5.481762	10.0824
depww2	.5277814	.0513522	10.28	0.000	.427133	.628429
anxww3	.1911445	.0579016	3.30	0.001	.0776594	.304629
_cons	3.742088	.7259142	5.16	0.000	2.319322	5.1648
ptsdww2 <-						
crhrw2	2.195928	.6644398	3.30	0.001	.8936502	3.49820
depww2	.336297	.0450201	7.47	0.000	.2480592	.42453
ptsdww1	.0805204	.0159101	5.06	0.000	.0493372	.111703
_cons	.6766411	.7626739	0.89	0.375	8181723	2.1714
depww2 <-						
crhrw2	-2.997931	.8641969	-3.47	0.001	-4.691725	-1.30413
ptsdww2	1985413	.0839801	-2.36	0.018	3631393	033943
ptsdww1	0687869	.0251606	-2.73	0.006	1181008	019473
anxww1	0730002	.0288625	-2.53	0.011	1295697	016430
fdferw1	.0861067	.0223817	3.85	0.000	.0422394	.12997
cumdose2	1.817435	.5521986	3.29	0.001	.7351456	2.89972
depww1	.1999633	.0289	6.92	0.000	.1433204	.256606
anxww2	.7136952	.0454922	15.69	0.000	.6245321	.80285
cumdose1	-2.302675	.8344223	-2.76	0.006	-3.938113	66723
_cons	8063311	.9930944	-0.81	0.417	-2.75276	1.14009
whpsleep <-						
crhrw3	4.90655	1.486595	3.30	0.001	1.992877	7.82022
fdferw1	.112439	.0332317	3.38	0.001	.0473061	.1775
whpel	.1390047	.0557938	2.49	0.013	.0296509	. 248358
anxww3	.197197	.0659371	2.99	0.003	.0679628	.32643
cumdose1	1.302139	.6803457	1.91	0.056	031314	2.63559
_cons	8.862195	2.046647	4.33	0.000	4.85084	12.873
ptsdww1 <-						
whpsleep	.1805458	.0661821	2.73	0.006	.0508313	.310260
fdferw1	.2846642	.0522065	5.45	0.000	.1823414	.38698
cataw1	40.57607	3.963624	10.24	0.000	32.80751	48.3446
_cons	1.954091	2.129102	0.92	0.359	-2.218872	6.1270
anxww1 <-						
ptsdww1	.5800759	.0479202	12.11	0.000	.4861541	.67399
cataw1	10.2861	4.166022	2.47	0.014	2.120852	18.4513
_cons	7.304252	1.725708	4.23	0.000	3.921927	10.6865

Continued on the next page \dots

Table 2 continued...

		OIM				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
MiPTSD <-						
fdferw2	.0966176	.0184734	5.23	0.000	.0604105	.1328248
BSIanx	.8808533	.1843349	4.78	0.000	.5195636	1.242143
ptsdww2	.1122685	.0402348	2.79	0.005	.0334098	.1911271
${\tt whpsleep}$.0458726	.0187412	2.45	0.014	.0091407	.0826046
injselfr	4.656888	.8431385	5.52	0.000	3.004367	6.309409
depww1	.066179	.015038	4.40	0.000	.0367049	.095653
BSIdep	.4610688	.1689217	2.73	0.006	.1299882	.7921493
anxww3	.0852604	.0241192	3.53	0.000	.0379877	.1325331
cumdose1	4836965	.2387868	-2.03	0.043	95171	015683
_cons	29.74785	1.394212	21.34	0.000	27.01524	32.48045
injselfr <-						
anxww1	.0049095	.0006713	7.31	0.000	.0035938	.0062252
_cons	.3897788	.0296403	13.15	0.000	.3316848	.4478728
fdferw1 <-						
anxww1	. 2428285	.0641174	3.79	0.000	.1171607	.3684962
injselfr	10.89551	3.731779	2.92	0.004	3.581355	18.20966
cataw1	28.93849	4.635297	6.24	0.000	19.85348	38.02351
_cons	13.68546	2.5428	5.38	0.000	8.701666	18.66926
whpel <-						
BSIanx	6.715157	1.128136	5.95	0.000	4.504052	8.926262
injselfr	10.07701	3.094423	3.26	0.001	4.012051	16.14197
_cons	-33.05093	8.570161	-3.86	0.000	-49.84814	-16.25372
cumdose2 <-						
cumdose1	1.339597	.0366997	36.50	0.000	1.267667	1.411527
_cons	.3879549	.0632438	6.13	0.000	. 2639992	.5119105
cumdose3 <-						
cumdose2	1.087217	.0123079	88.34	0.000	1.063094	1.11134
cumdose1	0439337	.0184663	-2.38	0.017	080127	0077403
_cons	.1920846	.0151063	12.72	0.000	.1624768	.2216924
cataw1 <-						
cumdose1	.026806	.0139758	1.92	0.055	000586	.0541981
_cons	.2362584	.0240842	9.81	0.000	.1890543	.2834626
_cons	7.304252	1.725708	4.23	0.000	3.921927	10.68658

Continued on the next page \dots

Table 2 continued...

		MIO				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval
depww1 <-						
anxww1	.4230334	.0399292	10.59	0.000	.3447737	.5012931
fdferw1	.2023836	.038409	5.27	0.000	.1271033	.2776639
cataw1	8.274791	3.230002	2.56	0.010	1.944103	14.60548
_cons	-3.21337	1.572704	-2.04	0.041	-6.295813	1309281
BSIdep <-						
ptsdww3	.0313303	.0108061	2.90	0.004	.0101507	.0525098
BSIanx	.4852375	.0504145	9.62	0.000	.3864268	.5840482
whpel	.0141887	.0045427	3.12	0.002	.0052852	.0230922
_cons	3.932305	.370065	10.63	0.000	3.206991	4.657619
anxww2 <-						
anxww1	.263287	.0223494	11.78	0.000	.219483	.307091
_cons	2.821857	.9971664	2.83	0.005	.8674463	4.776267
anxww3 <-						
depww3	.445235	.0479711	9.28	0.000	.3512133	.5392567
depww2	1109151	.0466566	-2.38	0.017	2023602	0194699
anxww2	.6006864	.0508415	11.81	0.000	.5010389	.7003338
_cons	1.22555	.6304837	1.94	0.052	010175	2.461276
ariance						
e.crhrw1	.6255551	.048058			.5381117	.7272081
e.crhrw2	.2440862	.018937			.2096546	.2841726
e.crhrw3	.0599902	.004608			.0516057	.0697371
e.ptsdww3	41.36927	3.191429			35.56411	48.12201
e.fdferw2	333.1759	25.59117			286.611	387.3059
e.BSIanx	6.860466	1.024461			5.119709	9.193099
e.depww3	103.9352	9.913811			86.21264	125.3008
e.ptsdww2	104.0836	8.164002			89.25173	121.3802
e.depww2	128.8719	12.31167			106.866	155.4093
e.whpsleep	429.1495	35.11681			365.5576	503.8038
e.ptsdww1	741.8834	58.63472			635.4201	866.1843
e.anxww1	686.7744	53.30065			589.8645	799.6058
e.MiPTSD	51.35726	3.944727			44.17957	59.70109
e.injselfr	.2101846	.0161609			.180781	.2443705
e.fdferw1	965.0757	77.50306			824.524	1129.586
e.whpel	781.4557	75.59018			646.4987	944.585
e.cumdose2	1.271465	.0976606			1.093765	1.478035
e.cumdose3	.0652934	.0050152			.056168	.0759014
e.cataw1	.1843879	.0141628			.1586179	.2143448
e.depww1	478.593	36.76066			411.7046	556.3486
e.BSIdep	5.303998	.4073976			4.562711	6.165719
e.anxww2	239.9314	18.43111			206.3951	278.917
e.anxww3	65.89234	5.649859			55.6993	77.95073
ovariance						
e.ptsdww3						
	-26.2958	10.50387	-2.50	0.012	-46.883	-5.708605
e.ptsdww1						
e.ptsdww1 e.anxww2 e.anxww3	21.86762	12.85303	1.70	0.089	-3.32386	47.0591

LR test of model vs. saturated: chi2(187) = 206.15, Prob > chi2 = 0.1604 stability index = .5775873

9.1 Direct effects on Chornobyl PTSD among males

9.1.1 Hypothesis 3: Direct dose effects on Chornobyl PTSD

To test the hypotheses, we examine the clustered-robust direct effects estimates in Table 3. These estimates are robust to violations of residual heteroskedasticity and serial correlation. They are computed and decomposed into standardized direct, indirect, and total effects, so we may compare them to one another in order to obtain a sense of relative impact on the target endogenous variable. Table 4 contains the indirect standardized coefficients, and Table 5 contains the total effects.

In order to review the results of the hypothesis tests, we have to examine Table 3, which presents the standardized direct effects for the male PTSD model. For each endogenous variable in the upper left of the panel with an arrow pointing to it are a list of direct effects originating with other variables in a column under the endogenous variable. To find the standardized direct path coefficient we examine the right-hand column of the same row as the source (starting point) variable for the direct effect in the panel for the pointed to endogenous variable.

We interpret partial evidence as a significant relationship between the exogenous or originating variable and its target endogenous variable. If the relationship in all three wave is statistically significant, we consider this full and complete transhistorical evidentiary support. If we had both transhistorical and cross-cultural causal support, we might have the basis for a law of science. Lacking that, we search for some empirical support for associations implied by our theories or expectations to perhaps work toward theories of psychological, social psychological, sociological, or epidemiological theories with a view toward understanding the mechanisms at work.

When we turn to the MiPTSD panel of Table 3 on page 25, we do find a path proceeding directly from cumulative external dose to PTSD as measured by the Mississippi civilian revised Chornobyl PTSD scale. What appears to be counterintuitive is that the relationship defined by the path appears to be an inverse one. The larger the dose, the less the PTSD ($stdized\ \beta = -0.068\ p = 0.071$). We generally round off at 3 digits to the right of the decimal point. Yet this path is not statistically significant at the 0.05 level when estimated by the robust standard errors, although by the conventional standard errors it is (non-standardized b = -.484, p = 0.043), which can be found in Table 2 on page 16.

This is an example of where the path diagram illustrates the conventional standard errors where our decomposition of effects uses robust estimates. There are no direct paths from the wave 2 or 3 reconstructed cumulative dose estimates. Therefore, we cannot say that there is evidence of a relationship in the first wave for sure. But the inverse nature of the relationship gives us cause for pause. We might be inclined to doubt such a relationship unless it was the product of propaganda, downplaying a real problem. Perhaps the robust estimates are those on which we should rely here. If that is the case, we would say that there is no empirical evidence of a relationship at any wave if we were to insist on

a 0.05 level of statistical significance. In the case where we were to say that there is partial empirical evidence of an effect, we would have to explain why the inverse relationship might be a plausible one. Such sign reversals are not uncommon in areas of non-significance; We have no conclusive evidence of any statistically significant evidence of a direct path from cumulative external dose to MiPTSD. Hypothesis 3 appears to be unsupported by our data.

Table 4: Clustered-robust standardized Direct effects among males

Direct effects		(Sto	d. Err.	adjusted i	for 339 clusters in id)
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
Structural					
crhrw1 <-					
crhrw1	0	(no path)			0
crhrw2	0	(no path)			0
crhrw3	0	(no path)			0
BSIanx	0	(no path)			0
depww3	0	(no path)			0
depww2	0	(no path)			0
whpsleep	0	(no path)			0
ptsdww1	.0045018	.0013276	3.39	0.001	.1897938
anxww1	0	(no path)			0
injselfr	.5020761	.0949485	5.29	0.000	.2707234
fdferw1	.0048078	.0014116	3.41	0.001	.2020453
whpel	0	(no path)			0
cataw1	0	(no path)			0
anxww2	0	(no path)			0
anxww3	0	(no path)			0
cumdose1	0	(no path)			0
crhrw2 <-					
crhrw1	.7450444	.0396705	18.78	0.000	.7606387
crhrw2	0	(no path)	20110	0.000	0
crhrw3	0	(no path)			0
ptsdww2	0	(no path)			0
depww2	.012571	.0017247	7.29	0.000	.2348698
whpsleep	0	(no path)	1.20	0.000	0
ptsdww1	0	(no path)			0
anxww1	0	(no path)			0
injselfr	.2177233	.0675237	3.22	0.001	.1198554
fdferw1	0	(no path)	0.22	0.001	0
whpel	0	(no path)			0
cumdose2	0	(no path)			0
cataw1	1334146	.0575789	-2.32	0.020	0634014
depww1	1334140	(no path)	2.32	0.020	0034014
anxww2	0	(no path)			0
anxww2 anxww3	0	•			0
cumdose1	0	(no path)			0
cumdose1	0	(no path)			0

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
crhrw3 <-					
crhrw1	1070087	.0363399	-2.94	0.003	1095677
crhrw2	1.021274	.0320161	31.90	0.000	1.024258
crhrw3	0	(no path)			C
BSIanx	0	(no path)			C
depww3	0	(no path)			C
ptsdww2	0	(no path)			C
depww2	0	(no path)			C
whpsleep	0	(no path)			C
ptsdww1	0018245	.000875	-2.09	0.037	0787588
anxww1	.0022437	.0009468	2.37	0.018	.0937909
injselfr	.0585597	.03018	1.94	0.052	.032331
fdferw1	0	(no path)			(
whpel	0	(no path)			C
cumdose2	0	(no path)			C
cataw1	0	(no path)			C
depww1	0	(no path)			C
anxww2	0	(no path)			C
anxww3	0	(no path)			0
cumdose1	0	(no path)			C

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

		Robust			
	Coef.	Std. Err.	Z	P> z	Std. Coef.
ptsdww3 <-					
crhrw1	1.039555	.3880518	2.68	0.007	.0816765
crhrw2	0	(no path)			(
crhrw3	0	(no path)			(
fdferw2	0	(no path)			(
BSIanx	0	(no path)			(
depww3	.1190431	.081706	1.46	0.145	.1774303
ptsdww2	.7233475	.0740011	9.77	0.000	.7667711
depww2	1819267	.0818473	-2.22	0.026	2615818
whpsleep	.0275381	.0178898	1.54	0.124	.0575386
ptsdww1	0	(no path)			(
anxww1	0	(no path)			(
injselfr	0	(no path)			(
fdferw1	0	(no path)			C
whpel	0	(no path)			C
cumdose2	0	(no path)			C
cataw1	0	(no path)			C
depww1	0	(no path)			C
anxww2	1094051	.0841742	-1.30	0.194	171539
anxww3	.2094263	.0842513	2.49	0.013	.3337514
cumdose1	0	(no path)			C
fdferw2 <-					
crhrw1	2.542799	1.150084	2.21	0.027	.0840731
crhrw2	0	(no path)			C
crhrw3	0	(no path)			C
BSIanx	0	(no path)			C
depww3	0	(no path)			(
ptsdww2	.6243222	.123818	5.04	0.000	.2784986
depww2	0	(no path)			C
whpsleep	0	(no path)			C
ptsdww1	.093147	.0533009	1.75	0.081	.1298411
anxww1	1093691	.0648356	-1.69	0.092	1476266
injselfr	0	(no path)			C
fdferw1	.3405319	.0514893	6.61	0.000	.4731589
whpel	0	(no path)			(
cumdose2	0	(no path)			(
cataw1	0	(no path)			
depww1	.114398	.0714912	1.60	0.110	.131254
anxww2	0	(no path)	· -	-	(
anxww3	0	(no path)			C
cumdose1	0	(no path)			C

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

		Robust					
	Coef.	Std. Err.	z	P> z	Std. Coef		
BSIanx <-							
crhrw1	5979033	.4260759	-1.40	0.161	200944		
crhrw2	1.058404	.45698	2.32	0.021	.348418		
crhrw3	0	(no path)					
fdferw2	.0222219	.006182	3.59	0.000	.22588		
BSIanx	0	(no path)					
depww3	.0594739	.0151131	3.94	0.000	.379180		
ptsdww2	0	(no path)					
depww2	0	(no path)					
whpsleep	.0451556	.0136699	3.30	0.001	.403583		
ptsdww1	0	(no path)					
anxww1	0	(no path)					
injselfr	0	(no path)			(
fdferw1	0	(no path)			(
whpel	038012	.0161483	-2.35	0.019	414178		
cumdose2	0	(no path)			(
cataw1	0	(no path)			(
depww1	0	(no path)			(
anxww2	0	(no path)			(
anxww3	035189	.0126572	-2.78	0.005	239880		
cumdose1	0	(no path)					
depww3 <-							
crhrw1	-6.734748	1.659877	-4.06	0.000	355015		
crhrw2	7.782119	1.772654	4.39	0.000	.401816		
crhrw3	0	(no path)					
depww3	0	(no path)					
ptsdww2	0	(no path)					
depww2	.5277814	.1096747	4.81	0.000	.509145		
whpsleep	0	(no path)					
ptsdww1	0	(no path)					
anxww1	0	(no path)					
injselfr	0	(no path)					
fdferw1	0	(no path)					
whpel	0	(no path)					
cumdose2	0	(no path)					
cataw1	0	(no path)					
depww1		(no path)			,		
anxww2	0	(no path)					
anxww2 anxww3	.1911445	.1380015	1.39	0.166	.204376		
			1.39	0.100	.204376		
cumdose1	0	(no path)					

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
ptsdww2 <-					
crhrw1	0	(no path)			(
crhrw2	2.195928	.6159029	3.57	0.000	. 159423
crhrw3	0	(no path)			
BSIanx	0	(no path)			(
depww3	0	(no path)			
ptsdww2	0	(no path)			
depww2	.336297	.104543	3.22	0.001	.456158
whpsleep	0	(no path)			
ptsdww1	.0805204	.022678	3.55	0.000	.251614
anxww1	0	(no path)			
injselfr	0	(no path)			(
fdferw1	0	(no path)			(
whpel	0	(no path)			(
cumdose2	0	(no path)			(
cataw1	0	(no path)			(
depww1	0	(no path)			
anxww2	0	(no path)			
anxww3	0	(no path)			
cumdose1	0	(no path)			(
depww2 <-					
crhrw1	0	(no path)			
crhrw2	-2.997931	.8535809	-3.51	0.000	1604588
crhrw3	0	(no path)			
BSIanx	0	(no path)			
depww3	0	(no path)			
ptsdww2	1985413	.1562873	-1.27	0.204	146372
depww2	0	(no path)			
whpsleep	0	(no path)			
ptsdww1	0687869	.0314623	-2.19	0.029	1584684
anxww1	0730002	.0335507	-2.18	0.030	1628498
injselfr	0	(no path)			
fdferw1	.0861067	.0260981	3.30	0.001	.197733
whpel	0	(no path)			
cumdose2	1.817435	.5958586	3.05	0.002	.2680864
	0	(no path)	0.00		.20000
cataw1		.0543206	3.68	0.000	.379173
	.1999633				
depww1			6.72	0.000	.778264
	.1999633 .7136952	.1062508 (no path)	6.72	0.000	.778264

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

oef.	Std. Err.		Robust					
		z	P> z	Std. Coef.				
0	(no path)			C				
0	(no path)			C				
0655	1.484217	3.31	0.001	.1801926				
0	(no path)			(
0	(no path)			(
0	(no path)			(
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
2439	.0401819	2.80	0.005	.1776828				
0047	.0625913	2.22	0.026	.1694631				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
7197	.0793374	2.49	0.013	.1504065				
2139	.3657819	3.56	0.000	.0880969				
0	(no path)			0				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
5458	.0739778	2.44	0.015	.1138845				
0	(no path)			C				
0	(no path)			C				
0	(no path)			C				
6642	.0658212	4.32	0.000	. 2837518				
0	(no path)			(
Ö	(no path)			(
7607	-	7.88	0.000	.4479925				
				(1170020				
	•			(
				0				
				C				
	7607 0 0 0 0	0 (no path) 0 (no path) 0 (no path)	0 (no path) 0 (no path) 0 (no path)	0 (no path) 0 (no path) 0 (no path)				

Table 3 Robust standardized direct effects among males--continued:

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
anxww1 <-					
crhrw1	0	(no path)			
crhrw2	0	(no path)			
crhrw3	0	(no path)			
BSIanx	0	(no path)			
depww3	0	(no path)			
depww2	0	(no path)			
whpsleep	0	(no path)			1
ptsdww1	.5800759	.0714797	8.12	0.000	.599043
anxww1	0	(no path)			1
injselfr	0	(no path)			
fdferw1	0	(no path)			
whpel	0	(no path)			
cataw1	10.2861	5.334632	1.93	0.054	.117280
anxww2	0	(no path)			
anxww3	0	(no path)			
cumdose1	0	(no path)			
MiPTSD <-					
crhrw1	0	(no path)			
crhrw2	0	(no path)			
crhrw3	0	(no path)			
ptsdww3	0	(no path)			
fdferw2	.0966176	.0225814	4.28	0.000	.228204
BSIanx	.8808533	.2347576	3.75	0.000	.204677
depww3	0	(no path)			
ptsdww2	.1122685	.0550254	2.04	0.041	.118287
depww2	0	(no path)			
whpsleep	.0458726	.0234563	1.96	0.051	.09526
ptsdww1	0	(no path)			
anxww1	0	(no path)			
injselfr	4.656888	.8158818	5.71	0.000	.196094
fdferw1	0	(no path)			
whpel	0	(no path)			
cumdose2	0	(no path)			
cataw1	0	(no path)			
depww1	.066179	.0169227	3.91	0.000	.179341
BSIdep	.4610688	.2328681	1.98	0.048	.111129
anxww2	0	(no path)	2.00	3.010	.111120
anxww3	.0852604	.0461846	1.85	0.065	.135052
	4836965	.2675311	-1.81	0.071	0679618

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

	Q 6	Robust		P> z Std. C		
	Coef.	Std. Err.	z	P> Z 	Std. Coef.	
injselfr <-						
crhrw3	0	(no path)			(
whpsleep	0	(no path)			(
ptsdww1	0	(no path)			(
anxww1	.0049095	.000593	8.28	0.000	.3717101	
injselfr	0	(no path)			(
fdferw1	0	(no path)			(
whpel	0	(no path)			(
cataw1	0	(no path)			(
anxww3	0	(no path)			(
cumdose1	0	(no path)			(
fdferw1 <-						
crhrw3	0	(no path)			(
whpsleep	0	(no path)			(
ptsdww1	0	(no path)			(
anxww1	.2428285	.0799778	3.04	0.002	.2358959	
injselfr	10.89551	4.009912	2.72	0.007	.139797	
fdferw1	0	(no path)	21.2	0.00.	(1207.07.	
whpel	0	(no path)				
cataw1	28.93849	5.23108	5.53	0.000	.3205316	
anxww3	0	(no path)	0.00	0.000	.020001	
cumdose1	0	(no path)			(
whpel <-						
crhrw1	0	(no path)			(
crhrw2	0	(no path)			· ·	
crhrw3	0	(no path)			· ·	
fdferw2	0	(no path)			(
BSIanx	6.715157	1.223786	5.49	0.000	.61629	
depww3	0.710107	(no path)	0.40	0.000	.010230	
ptsdww2	0	(no path)			(
depww2	0	(no path)			(
whpsleep	0	(no path)			Č	
ptsdww1	0				,	
-	0	(no path)			(
anxww1 injselfr	10.07701	(no path) 3.142222	3.21	0.001	.16759	
fdferw1	10.07701		3.21	0.001	.10759	
		(no path)				
whpel	0	(no path)			(
cumdose2	0	(no path)			(
cataw1	0	(no path)			(
depww1	0	(no path)				
anxww2	0	(no path)			(
anxww3	0	(no path)			(
cumdose1	0	(no path)			(

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
cumdose2 <-					
cumdose1	1.339597	.2873117	4.66	0.000	.8928449
cumdose3 <-					
cumdose2	1.087217	.0775735	14.02	0.000	1.019854
cumdose1	0439337	.0846185	-0.52	0.604	0274676
cataw1 <-					
cumdose1	.026806	.0063253	4.24	0.000	.103612
depww1 <-					
crhrw3	0	(no path)			0
whpsleep	0	(no path)			0
ptsdww1	0	(no path)			0
anxww1	.4230334	.0645267	6.56	0.000	.4976803
injselfr	0	(no path)			0
fdferw1	.2023836	.0524057	3.86	0.000	. 2450927
whpel	0	(no path)			0
cataw1	8.274791	4.300853	1.92	0.054	.1109959
anxww3	0	(no path)			0
cumdose1	0	(no path)			0

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

		Robust			
	Coef.	Std. Err.	Z	P> z	Std. Coef.
BSIdep <-					
crhrw1	0	(no path)			0
crhrw2	0	(no path)			0
crhrw3	0	(no path)			0
ptsdww3	.0313303	.012817	2.44	0.015	.1292007
fdferw2	0	(no path)			0
BSIanx	.4852375	.1049672	4.62	0.000	.4677984
depww3	0	(no path)			0
ptsdww2	0	(no path)			0
depww2	0	(no path)			0
whpsleep	0	(no path)			0
ptsdww1	0	(no path)			0
anxww1	0	(no path)			0
injselfr	0	(no path)			0
fdferw1	0	(no path)			0
whpel	.0141887	.0063831	2.22	0.026	.149044
cumdose2	0	(no path)			0
cataw1	0	(no path)			0
depww1	0	(no path)			0
anxww2	0	(no path)			0
anxww3	0	(no path)			0
cumdose1	0	(no path)			0
anxww2 <-					
crhrw3	0	(no path)			0
whpsleep	0	(no path)			0
ptsdww1	0	(no path)			0
anxww1	. 263287	.0353186	7.45	0.000	.5386153
injselfr	0	(no path)			0
fdferw1	0	(no path)			0
whpel	0	(no path)			0
cataw1	0	(no path)			0
anxww3	0	(no path)			0
cumdose1	0	(no path)			0

 ${\tt Table \ 3} \quad {\tt Robust \ standardized \ direct \ effects \ among \ males--continued:}$

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
	0001.	DUG. EII.		17 2	
anxww3 <-					
crhrw1	0	(no path)			0
crhrw2	0	(no path)			0
crhrw3	0	(no path)			0
depww3	.445235	.1078923	4.13	0.000	.4164099
ptsdww2	0	(no path)			0
depww2	1109151	.1077826	-1.03	0.303	1000714
whpsleep	0	(no path)			0
ptsdww1	0	(no path)			0
anxww1	0	(no path)			0
injselfr	0	(no path)			0
fdferw1	0	(no path)			0
whpel	0	(no path)			0
cumdose2	0	(no path)			0
cataw1	0	(no path)			0
depww1	0	(no path)			0
anxww2	.6006864	.1061739	5.66	0.000	.5909916
anxww3	0	(no path)			0
cumdose1	0	(no path)			0

9.1.2 Hypothesis 4: Direct dose effects on mental health as measured by the Brief Symptom Inventory

In this model, we use several measures of the BSI, including those of depression and anxiety. Now we examine the panels for BSI anxiety and BSI depression for in Table 3 on pages 22 and 28 for indication of statistically significant direct effects of cumulative dose. From those panels we discover that there are no direct dose effects on either of these mental health measures. Hypothesis 4 appears to be inconsistent with our data for male respondents.

9.1.3 Hypothesis 5: Perceived risk directly explains mental health as measured by BSI scales

To test hypothesis 5, we turn to the two BSI measures of mental health in this male model found in Table 3. First we examine the panel for BSI anxiety on page 22. We see that the path from perceived risk in wave 1 to BSI anxiety is not statistically significant ($\beta = -0.200, p = 0.161$). But the direct path from perceived risk in wave 2 to BSI anxiety is significant at the 0.05 level (crhrw2 stdized $\beta = 0.348, p = 0.021$). This finding allows us to say that we evidence of a direct effects in wave 2 of perceived risk to anxiety as measured by the BSI.

Because we also have a measure of BSI mental health in the form of the depression scale, we examine this panel on page 28. But we find no direct path from any of the perceived risks leading to BSI depression. Therefore, we only have partial confirmation of hypothesis 5 from our data insofar as it relates to wave 2 perceived risk and BSI measured anxiety.

9.1.4 Hypothesis 6: Direct Perceived risk effects on male PTSD

If we examine the panel of Table 3 relating to direct effects on Chornobyl PTSD, on page 25, we see no direct path from perceived risk of exposure at any wave. Therefore, we find no empirical evidence to support Hypothesis 6 among men.

9.1.5 Hypothesis 8: Direct perceived risk effects on Nottingham measured illnesses

In this model, we have two measures of self-reported Nottingham physical illness: sleep issues and energy level. We have to examine both of these panels in Table 3 for indications of statistically significant direct effects originating with perceived risk of exposure. We find the sleep issue (whpsleep) panel on page 24 and notice that there is a significant direct effect from wave 3 perceived risk crhrw1 standardized $\beta=0.180,\ p=.001$). Therefore we have partial recent confirmation of a direct effect from perceived risk on sleep for males.

In Table 3, on page 26, we find the energy level (whpel) panel but find no significant paths from any of the perceived risk direct effects there. Therefore, we can say only that we have partial confirmation of this hypothesis insofar as

it related recently to direct effects from perceived risk to sleep issues among males.

9.2 Indirect effects on male PTSD

Most of the hypotheses pertaining to indirect effects relate to other variables not contained in this male model. To provide a more complete perspective, we consider the indirect effects to PTSD.

9.2.1 Indirect effects originating with cumulative external dose

To learn what happened with respect to indirect effects, we turn to the MiPTSD panel in Table 4 on page 38. We find statistically significant indirect robust effects from cumulative external dose in wave 1 (cumdose1 stdized $\beta=0.055$ p=0.000) and wave 2 (cumdose2 stdized $\beta=0.049$ p=0.002). There was no indirect effect originating with cumdose3. Both indirect effects had positive signs indicating they contribute to PTSD indirectly. There are more than five alternative paths of cumulative external dose leading to MiPTSD, and the reader can trace them if (s)he is interested using Figure 1.

9.2.2 Indirect effects originating with perceived risk of exposure

We find statistically significant indirect effects originating with perceived risk of exposure only in waves 2 (crhrw2 stdized $\beta=0.182$ p=0.000) and 3 (crhrw3 stdized $\beta=0.040$ p=0.001)in the MiPTSD panel of Table 4. The wave 1 effect (crhrw1 stdized $\beta=.058$, p=0.127) is not a statistically significant robust estimate. There are more than seven indirect paths leading from perceived risk of exposure to MiPTSD, and the reader can trace them using Figure 1 if (s)he wishes to do so.

Table 5: Clustered-robust standardized Indirect effects among males

		(Std	. Err.	adjusted	for 339 clusters in id)
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
Structural					
crhrw1 <-					
crhrw1	.0039986	.00065	6.15	0.000	.0039986
crhrw2	.0086451	.0006171	14.01	0.000	.0084678
crhrw3	.006607	.0019986	3.31	0.001	.0064527
BSIanx	.0010013	.0001825	5.49	0.000	.0029794
depww3	.0001772	.0000312	5.68	0.000	.003361
depww2	.0001664	.0000298	5.58	0.000	.003046
whpsleep	.0013466	.0005333	2.52	0.012	.0358098
ptsdww1	.0027061	.0003341	8.10	0.000	.1140872
anxww1	.0046736	.0007558	6.18	0.000	.1907989
injselfr	.082695	.0284	2.91	0.004	.0445898
fdferw1	.0022516	.0004773	4.72	0.000	.0946229
whpel	.0001491	.0000924	1.61	0.106	.0048344
cataw1	.5439699	.0536355	10.14	0.000	.2532061
anxww2	.0002775	.000025	11.09	0.000	.0055372
anxww3	.0002642	.0001148	2.30	0.021	.0053582
cumdose1	.016357	.0040042	4.08	0.000	.0294296
crhrw2 <-					
crhrw1	0254072	.0013957	-18.20	0.000	025939
crhrw2	0311756	.0100577	-3.10	0.002	0311756
crhrw3	.0058973	.0017839	3.31	0.001	.0058801
ptsdww2	0022657	.0017924	-1.26	0.206	0312088
depww2	0010966	.0002367	-4.63	0.000	0204876
whpsleep	.0012019	.000476	2.52	0.012	.0326322
ptsdww1	.0064336	.0010632	6.05	0.000	.2769161
anxww1	.0071966	.0007989	9.01		.2999507
injselfr	.4312383	.0741804	5.81		.2373941
fdferw1	.006886	.0011021	6.25		.2954398
whpel	.0001331	.0000824	1.61		.0044054
cumdose2	.020854	.0068371	3.05		.0574729
cataw1	.5575104	.0587573	9.49		.2649406
depww1	.0022967	.0006234	3.68		.0813685
anxww2	.0083309	.0012074	6.90		.1697316
anxww3	.0002358	.0001024	2.30		.0048828
cumdose1	.0144475	.0085224	1.70		.026538

Continued on the next page \dots

 ${\tt Table\ 4\ Clustered-robust\ standardized\ Indirect\ effects\ continued\ among\ males:}$

	Robust				
	Coef.	Std. Err.	z	P> z	Std. Coef
rhrw3 <-					
crhrw1	.7343082	.0391512	18.76	0.000	.751868
crhrw2	0332195	.0102419	-3.24	0.001	033316
crhrw3	.0049675	.0015027	3.31	0.001	.004967
BSIanx	.0007529	.0001372	5.49	0.000	.002293
depww3	.0001332	.0000235	5.68	0.000	.002587
ptsdww2	0023109	.0018266	-1.27	0.206	031923
depww2	.0116919	.0017522	6.67	0.000	.219084
whpsleep	.0010124	.000401	2.52	0.012	.027567
ptsdww1	.0072438	.0010441	6.94	0.000	.312698
anxww1	.0070958	.000765	9.28	0.000	.29661
injselfr	.5985946	.0929224	6.44	0.000	.330485
fdferw1	.0061584	.0009668	6.37	0.000	. 264995
whpel	.0001121	.0000694	1.61	0.106	.003721
cumdose2	.0212493	.0069667	3.05	0.002	.058733
cataw1	.3817176	.0847673	4.50	0.000	.181930
depww1	.0023399	.0006352	3.68	0.000	.083139
anxww2	.0084638	.0012324	6.87	0.000	.172943
anxww3	.0001986	.0000863	2.30	0.021	.00412
cumdose1	.0130935	.0085312	1.53	0.125	.024121
ptsdww3 <-					
crhrw1	.6459379	.4099526	1.58	0.115	.050750
crhrw2	3.076713	.5538963	5.55	0.000	.236777
crhrw3	.2263129	.068459	3.31	0.001	.017365
fdferw2	.0007622	.000212	3.59	0.000	.001811
BSIanx	.0342994	.0062508	5.49	0.000	.008018
depww3	.1190597	.0283206	4.20	0.000	.177455
ptsdww2	0361301	.0287823	-1.26	0.209	038299
depww2	.3663012	.0744599	4.92	0.000	.526683
whpsleep	.0185866	.0069944	2.66	0.008	.038835
ptsdww1	.0943682	.016401	5.75	0.000	.31258
anxww1	.0766622	.0087764	8.74	0.000	.245898
injselfr	2.275621	.3749315	6.07	0.000	.096406
fdferw1	.0637675	.0081912	7.78	0.000	.210549
whpel	.0051078	.0031636	1.61	0.106	.013010
cumdose2	.3350888	.1098612	3.05	0.002	.071070
camadose2	6.358303	.7152089	8.89	0.002	.232535
depww1	.0369554	.010021	3.69	0.000	.100757
anxww2	.2894639	.0253144	11.43	0.000	.453857
anxww2	.0534007	.0332405	1.61	0.108	.085101
cumdose1	.2548308	.1381239	1.84	0.108	.036023
cumaosel	.2546308	.1301239	1.84	0.065	.036023

Continued on the next page \dots

 ${\tt Table\ 4\ Clustered-robust\ standardized\ Indirect\ effects\ continued\ among\ males:}$

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
fdferw2 <-					
crhrw1	.6174556	.03904	15.82	0.000	.020415
crhrw2	.9268842	.3833708	2.42	0.016	.030017
crhrw3	.1977894	.0598307	3.31	0.001	.006386
BSIanx	.0299764	.005463	5.49	0.000	.00294
depww3	.0053038	.0009338	5.68	0.000	.003326
ptsdww2	0412127	.0327401	-1.26	0.208	018384
depww2	.209672	.0607963	3.45	0.001	.126866
whpsleep	.0403113	.0159658	2.52	0.012	.035444
ptsdww1	.1226305	.0164119	7.47	0.000	.170939
anxww1	.2406846	.039213	6.14	0.000	.324876
injselfr	6.983559	1.925095	3.63	0.000	.124502
fdferw1	.1310845	.0170027	7.71	0.000	.18213
whpel	.004464	.0027649	1.61	0.106	.004785
cumdose2	.3810652	.1249349	3.05	0.002	.034011
cataw1	24.92452	2.756466	9.04	0.000	.383593
depww1	.0420029	.0113944	3.69	0.000	.048191
anxww2	.1543922	.0218896	7.05	0.000	.1018
anxww3	.0079082	.0034356	2.30	0.021	.005303
cumdose1	.7482852	.2451216	3.05	0.002	.044513
BSIanx <-					
crhrw1	.7972802	.1140231	6.99	0.000	. 267951
crhrw2	.226473	.1145065	1.98	0.048	.074553
crhrw3	.18859	.0570479	3.31	0.001	.061901
fdferw2	0038837	.0010804	-3.59	0.000	039476
BSIanx	1747678	.0318501	-5.49	0.000	174767
depww3	016272	.0028997	-5.61	0.000	103743
ptsdww2	.0032101	.0060694	0.53	0.597	.014555
depww2	.0414971	.0063346	6.55	0.000	. 255226
whpsleep	0067192	.0024394	-2.75	0.006	060053
ptsdww1	.0064945	.0019112	3.40	0.001	.092021
anxww1	.0117723	.0022539	5.22	0.000	.161522
injselfr	.3362003	.1421123	2.37	0.018	.060925
fdferw1	.0190509	.0021838	8.72	0.000	. 269070
whpel	.0119861	.0028194	4.25	0.000	.130600
cumdose2	.0754183	.0247264	3.05	0.002	.068422
cataw1	.8505182	.1472452	5.78	0.000	. 133054
depww1	.0103958	.0027202	3.82	0.000	.121241
anxww2	.0216862	.0052252	4.15	0.000	.14544
anxww3	.0219873	.0065105	3.38	0.001	.149885
cumdose1	.0783243	.0279312	2.80	0.005	.047361

 ${\tt Table\ 4\ Clustered-robust\ standardized\ Indirect\ effects\ continued\ among\ males:}$

	Coef.	Robust Std. Err.	z	P> z	Std. Coef
depww3 <-					
crhrw1	4.210215	.2961274	14.22	0.000	.2219373
crhrw2	-1.272201	.5389224	-2.36	0.018	0656879
crhrw3	.0365003	.0110412	3.31	0.001	.001879:
depww3	.0939995	.0226924	4.14	0.000	.093999!
ptsdww2	1182772	.0931602	-1.27	0.204	0841194
depww2	.0683362	.0256418	2.67	0.008	.065923
whpsleep	.0074391	.0029463	2.52	0.012	.010428
ptsdww1	.0398199	.0228431	1.74	0.081	.088496
anxww1	.1754403	.0247017	7.10	0.000	.377555
injselfr	.9832649	.5994658	1.64	0.101	.027948
fdferw1	.0755332	.0171051	4.42	0.000	.1673279
whpel	.0008238	.0005102	1.61	0.106	.0014079
cumdose2	1.083405	.3552018	3.05	0.002	.154168
cataw1	5.724116	1.201329	4.76	0.000	. 1404539
depww1	.1192157	.0323824	3.68	0.000	.218076
anxww2	.5518212	.056219	9.82	0.000	.5804973
anxww3	.0192398	.013013	1.48	0.139	.020571
cumdose1	.2417886	.3939774	0.61	0.539	.022933
ptsdww2 <-					
crhrw1	.8587135	.0476045	18.04	0.000	.063647
crhrw2	9929863	.2892366	-3.43	0.001	072090
crhrw3	.1015311	.0307128	3.31	0.001	.0073496
BSIanx	.0153878	.0028043	5.49	0.000	.0033936
depww3	.0027226	.0004793	5.68	0.000	.003828
ptsdww2	0653878	.0516249	-1.27	0.205	0653878
depww2	0058809	.0074011	-0.79	0.427	0079769
whpsleep	.020693	.0081957	2.52	0.012	.040787
ptsdww1	.0302444	.0120238	2.52	0.012	.0945093
anxww1	.0939971	.0126864	7.41	0.000	. 284426
injselfr	1.592997	.3460567	4.60	0.000	.063665
fdferw1	.0799331	.0113821	7.02	0.000	. 248978
whpel	.0022915	.0014193	1.61	0.106	.005506
cumdose2	.6005099	.1968813	3.05	0.002	.120151
cataw1	8.160969	.8766004	9.31	0.000	.281560
depww1	.0661102	.0179509	3.68	0.000	.170039
anxww2	.2382549	.0349034	6.83	0.000	.352410
anxww3	.0040595	.0017636	2.30	0.021	.006103
cumdose1	.2893085	.2377172	1.22	0.224	.0385808

 ${\tt Table\ 4\ Clustered-robust\ standardized\ Indirect\ effects\ continued\ among\ males:}$

Die 4 Cluste.	T				continued among mates.
	Coef.	Robust Std. Err.	z	P> z	Std. Coef
	0001.				
depww2 <-					
crhrw1	-2.287268	.1215208	-18.82	0.000	124984
crhrw2	0574964	.1319192	-0.44	0.663	003077
crhrw3	.0293207	.0088694	3.31	0.001	.001564
BSIanx	.0044438	.0008098	5.49	0.000	.000722
depww3	.0007862	.0001384	5.68	0.000	.00081
ptsdww2	.01958	.0153687	1.27	0.203	.014435
depww2	0983089	.018801	-5.23	0.000	098308
whpsleep	.0059758	.0023668	2.52	0.012	.008683
ptsdww1	.1007741	.0161576	6.24	0.000	.232159
anxww1	.2777369	.0278139	9.99	0.000	.619579
injselfr	5745953	.5288702	-1.09	0.277	0169
fdferw1	.0268425	.0098833	2.72	0.007	.061640
whpel	.0006618	.0004099	1.61	0.106	.001172
cumdose2	1786701	.0585782	-3.05	0.002	026355
cataw1	8.57216	1.451326	5.91	0.000	.218035
depww1	0196469	.0053395	-3.68	0.000	037254
anxww2	0694584	.0105054	-6.61	0.000	075742
anxww3	.0011723	.0005093	2.30	0.021	.001299
cumdose1	2.659225	1.085338	2.45	0.014	.261440
whpsleep <-					
crhrw1	3.116858	.5066281	6.15	0.000	.117203
crhrw2	6.738654	.4810148	14.01	0.000	.248199
crhrw3	.2434555	.0736445	3.31	0.001	.008940
fdferw2	.0173446	.0048252	3.59	0.000	.019726
BSIanx	.7805213	.1422441	5.49	0.000	.087329
depww3	.1381003	.024313	5.68	0.000	.098512
ptsdww2	0149298	.0196229	-0.76	0.447	007574
depww2	.1297386	.0232355	5.58	0.000	.089280
whpsleep	.0496185	.0121593	4.08	0.000	.049618
ptsdww1	.0796119	.0121333	6.56	0.000	.126211
anxww1	.143925	.012131	8.01	0.000	.220945
injselfr	6.448635	1.020859	6.32	0.000	.130751
fdferw1	.0659566	.0076973	8.57	0.000	.104228
whpel	022772	.0142115	-1.60	0.109	027761
cumdose2	.2357914	.0773059	3.05	0.002	.023934
cataw1	9.205323	1.259585	7.31	0.000	.161124
depww1	.0279272	.0072786	3.84	0.000	.036441
anxww2	.2162829	.0195041	11.09	0.000	.162301
anxww3	.008716	.0237783	0.37	0.714	.006647
cumdose1	.3284879	.1137784	2.89	0.004	.02222

 ${\tt Table\ 4\ Clustered-robust\ standardized\ Indirect\ effects\ continued\ among\ males:}$

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
ptsdww1 <-					
crhrw1	.591687	.0961755	6.15	0.000	.014034
crhrw2	1.279229	.0913132	14.01	0.000	.029720
crhrw3	.9776482	. 2957356	3.31	0.001	.022647
fdferw2	.0032926	.000916	3.59	0.000	.002362
BSIanx	.1481698	.0270028	5.49	0.000	.010457
depww3	.0262162	.0046154	5.68	0.000	.011796
ptsdww2	0028342	.0037251	-0.76	0.447	00090
depww2	.0246288	.0044109	5.58	0.000	.010690
whpsleep	.018708	.0053142	3.52	0.000	.011800
ptsdww1	.0665608	.0083717	7.95	0.000	.066560
anxww1	.1160132	.0275504	4.21	0.000	.112339
injselfr	4.485302	1.353654	3.31	0.001	.057365
fdferw1	.048511	.0091163	5.32	0.000	.048355
whpel	.022065	.0136664	1.61	0.106	.016967
cumdose2	.0447613	.0146753	3.05	0.002	.00286
cataw1	13.40889	1.777577	7.54	0.000	.148044
depww1	.0053015	.0013817	3.84	0.000	.004363
anxww2	.0410579	.0037025	11.09	0.000	.019434
anxww3	.0390894	.0169819	2.30	0.021	.018806
cumdose1	1.709827	.3426556	4.99	0.000	.072968
anxww1 <-					
crhrw1	.3432234	.0557891	6.15	0.000	.008407
crhrw2	.7420497	.0529686	14.01	0.000	.017803
crhrw3	.5671102	.1715491	3.31	0.001	.013566
BSIanx	.0859497	.0156637	5.49	0.000	.006264
depww3	.0152074	.0026773	5.68	0.000	.007066
depww2	.0142866	.0025587	5.58	0.000	.006404
whpsleep	.1155823	.0457778	2.52	0.012	.075290
ptsdww1	.0386103	.0048562	7.95	0.000	.039872
anxww1	.0672965	.0159813	4.21	0.000	.067296
injselfr	2.601816	.7852219	3.31	0.001	.034364
fdferw1	.1932669	.0409703	4.72	0.000	.198946
whpel	.0127994	.0079276	1.61	0.106	.010164
cataw1	31.31537	3.271463	9.57	0.000	.357052
anxww2	.0238167	.0021478	11.09	0.000	.011642
anxww3	.0226748	.0098508	2.30	0.021	.011265
cumdose1	1.267559	.2751129	4.61	0.000	.055862

Table 4 Clustered-robust standardized Indirect effects continued among males:

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
MiPTSD <-					
crhrw1	.7474093	.489867	1.53	0.127	.058367
crhrw2	2.380813	.4999053	4.76	0.000	.182113
crhrw3	.5266522	.1593107	3.31	0.001	.040167
ptsdww3	.0144454	.0059095	2.44	0.015	.01435
fdferw2	.0221059	.0061497	3.59	0.000	.052212
BSIanx	.1139264	.0497427	2.29	0.022	.026472
depww3	.102776	.017698	5.81	0.000	.152257
ptsdww2	.0590164	.0204989	2.88	0.004	.062180
depww2	.1287108	.0195378	6.59	0.000	. 183945
whpsleep	.0614639	.0150694	4.08	0.000	.127646
ptsdww1	.0894304	.012741	7.02	0.000	. 294439
anxww1	.1224487	.0149811	8.17	0.000	.390383
injselfr	2.001585	.497614	4.02	0.000	.084283
fdferw1	.1139829	.0105995	10.75	0.000	.374073
whpel	0163513	.0207612	-0.79	0.431	041398
cumdose2	.2339235	.0766935	3.05	0.002	.049313
cataw1	8.742087	1.06122	8.24	0.000	.317780
depww1	.0393192	.011531	3.41	0.001	.106553
BSIdep	0	(no path)			
anxww2	.1467996	.0123129	11.92	0.000	.228777
anxww3	.0088314	.0236569	0.37	0.709	.013989
cumdose1	.3910917	.1018854	3.84	0.000	.054950
injselfr <-					
crhrw3	.0027842	.0008422	3.31	0.001	.005042
whpsleep	.0005674	.0002247	2.52	0.012	.027986
ptsdww1	.0030374	.0003745	8.11	0.000	.237491
anxww1	.0003304	.0000785	4.21	0.000	.025014
injselfr	.0127736	.003855	3.31	0.001	.012773
fdferw1	.0009488	.0002011	4.72	0.000	.073950
whpel	.0000628	.0000389	1.61	0.106	.003778
cataw1	.2042417	.0314015	6.50	0.000	.176314
anxww3	.0001113	.0000484	2.30	0.021	.004187
cumdose1	.0062231	.0015914	3.91	0.000	.020764
fdferw1 <-					
crhrw3	.168046	.0508334	3.31	0.001	.003905
whpsleep	.0342493	.0135649	2.52	0.012	.021673
ptsdww1	.1833289	.0226049	8.11	0.000	.183918
anxww1	.0734326	.0095069	7.72	0.000	.071336
injselfr	.7709694	.2326767	3.31	0.001	.009892
fdferw1	.0572688	.0121403	4.72	0.000	.057268
whpel	.0037927	.0023491	1.61	0.106	.002925
cataw1	12.32734	1.895292	6.50	0.000	.136541
anxww3	.006719	.002919	2.30	0.021	.00324
cumdose1	1.151328	.2723676	4.23	0.000	.049291

Table 4 Clustered-robust standardized Indirect effects continued among males:

ole 4 Cluster	ed-longs st	alluarurzeu			continued among mares.
		Robust			
	Coef.	Std. Err.	. z	P> z	Std. Coef
whpel <-					
crhrw1	1.355828	2.458451	0.55	0.581	.0418199
crhrw2	8.66486	2.596751	3.34	0.001	.2617843
crhrw3	1.294468	.3915727	3.31	0.001	.0389948
fdferw2	.1232384	.0342843	3.59	0.000	.114968
BSIanx	-1.169341	.2131035	-5.49	0.000	1073183
depww3	.2908599	.0850865	3.42	0.001	.1701909
ptsdww2	.0214747	.0408607	0.53	0.599	.008936
depww2	.2793665	.0425708	6.56	0.000	.157693
whpsleep	.2638245	.0759796	3.47	0.001	.216406
ptsdww1	.0742197	.0149851	4.95	0.000	.096515
anxww1	.1318553	.0181447	7.27	0.000	.166035
injselfr	2.386357	.9758522	2.45	0.014	.039689
fdferw1	.1374913	.0153267	8.97	0.000	.178220
whpel	1741346	.0977597	-1.78	0.075	1741346
cumdose2	.5077305	.166463	3.05	0.002	.042275
cataw1	7.769508	1.175369	6.61	0.000	.1115504
depww1	.0699613	.0183042	3.82	0.000	.074883
anxww2	.1468044	.0350811	4.18	0.000	.090363
anxww3	0875302	.0937941	-0.93	0.351	0547619
cumdose1	.5886697	.21927	2.68	0.007	.032668
cumdose2 <-					
cumdose1	0	(no path)			(
cumdose3 <-					
cumdose2	0	(no path)			(
cumdose1	1.456433	. 2682484	5.43	0.000	.9105718
cataw1 <-					
cumdose1	0	(no path)			(
depww1 <-					
crhrw3	.2739163	.0828589	3.31	0.001	.0077093
whpsleep	.0558267	.0221108	2.52	0.012	.042782
ptsdww1	.2988277	.0368462	8.11	0.000	.363053
anxww1	.0924747	.0243824	3.79	0.000	.1087924
injselfr	3.461758	1.18969	2.91	0.004	.0537903
fdferw1	.0933486	.0197888	4.72	0.000	.113048
whpel	.0061821	.003829	1.61	0.106	.0057758
cataw1	25.95034	3.256834	7.97	0.000	.3480913
anxww3	.010952	.004758	2.30	0.021	.006401
cumdose1	.9910439	.2395578	4.14	0.000	.051383

Table 4 Clustered-robust standardized Indirect effects continued among males:

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
BSIdep <-					
crhrw1	.1687895	.2158677	0.78	0.434	.054688
crhrw2	.8428077	.2272037	3.71	0.000	.267474
crhrw3	.1169682	.0353825	3.31	0.001	.03701
ptsdww3	0	(no path)			
fdferw2	.0106709	.0029686	3.59	0.000	.104569
BSIanx	0050414	.0009188	-5.49	0.000	00486
depww3	.0325499	.008423	3.86	0.000	.20006
ptsdww2	.023393	.0051353	4.56	0.000	.10226
depww2	.0298763	.0047461	6.29	0.000	.17714
whpsleep	.0238392	.0066027	3.61	0.000	.20540
ptsdww1	.007161	.0014019	5.11	0.000	.09781
anxww1	.0099851	.0015657	6.38	0.000	.13207
injselfr	.4112717	.081291	5.06	0.000	.07185
fdferw1	.0131929	.0014566	9.06	0.000	.17963
whpel	0149394	.0084998	-1.76	0.079	15693
cumdose2	.0542983	.0178021	3.05	0.002	.04749
cataw1	.7221498	.1069494	6.75	0.000	.10891
depww1	.0071949	.001862	3.86	0.000	.08089
anxww2	.0182472	.0042399	4.30	0.000	.11798
anxww3	.0005865	.0090887	0.06	0.949	.00385
cumdose1	.0543423	.0204311	2.66	0.008	.03167
anxww2 <-					
crhrw3	.1493128	.0451667	3.31	0.001	.00730
whpsleep	.0304313	.0120527	2.52	0.012	.04055
ptsdww1	.1628921	.020085	8.11	0.000	.344
anxww1	.0177183	.0042077	4.21	0.000	.03624
injselfr	.6850244	.2067387	3.31	0.001	.01850
fdferw1	.0508847	.010787	4.72	0.000	.10715
whpel	.0033699	.0020872	1.61	0.106	.00547
cataw1	10.95313	1.684011	6.50	0.000	. 25548:
anxww3	.00597	.0025936	2.30	0.021	.00606
cumdose1	.3337319	.0838318	3.98	0.000	.03008
anxww3 <-					
crhrw1	8160364	.8183238	-1.00	0.319	04023
crhrw2	3.354694	.8724393	3.85	0.000	.16199
crhrw3	.1026893	.0310632	3.31	0.001	.00494
depww3	.0441697	.0104632	4.22	0.000	.04131
ptsdww2	0330717	.0261882	-1.26	0.207	0219
depww2	.2785758	.0513384	5.43	0.000	. 25134
whpsleep	.020929	.0082892	2.52	0.012	.02743
ptsdww1	.1120284	.0165986	6.75	0.000	. 23285
anxww1	.2241998	.0271764	8.25	0.000	. 45125
injselfr	.913	.3253423	2.81	0.005	.02427
fdferw1	.051668	.0087445	5.91	0.000	.107049
whpel	.0023176	.0014355	1.61	0.106	.003704
cumdose2	.3047125	.0999021	3.05	0.002	.04055
cataw1	8.17719	1.334156	6.13	0.002	.18765
depww1	.0335656	.00911	3.68	0.000	.0574
anxww2	.1780012	.0157602	11.29	0.000	.17512
CIIA W W Z					
anxww3	.0971265	.067635	1.44	0.151	.09712

9.2.3 Major indirect effects on male PTSD

If we sort the standardized indirect effects according to the magnitude of the path coefficients, we can find out which indirect effects have the largest impact, assuming that they are statistically significant. The largest indirect impact is that of self-reported anxiety in 1986, fear of consuming contaminated food the same year, and the experience of a catastrophe in the same year. Following that the next largest indirect effect constitutes self-reported PTSD symptoms. Next com a series of wave 2 impacts—including self-reported anxiety, self-reported depression, and perceived risk in wave 2. These impacts constitute the top seven ranking impacts. As for the rankings of the BSI measures of anxiety and depression on PTSD, they are in the bottom tier in terms of magnitude of indirect impacts on PTSD.

9.3 Total effects addenda on male PTSD

It is noteworthy that if we take the total effects and sort them by their absolute value from largest to smallest, and eliminate those that are not wave specific, those with the largest five total effects originate in wave 1. The set with the next largest impact originates in wave 2. The last group are somewhat of mixed origin. This is more or less typical of what we would expect in the event of a traumatic crisis.

To fully test the effects of hypothesis 3,4,5, 6, and 8 we should turn to Table 5 to see the total effects on PTSD. When we turn to the MiPTSD panel of Table 5, we find the total effects upon Chornobyl PTSD as measured by the revised Mississippi civilian PTSD scale. Because total effects are mathematically the sum of the direct and indirect effects, they are sometimes a little different from a simple sum and we should take a moment to consider whether the whole is really equal to the sum of its parts, or whether there are synergistic or conflicting effects that alter that equation when it is converted to psychological symptoms. Such moderations are not taken into consideration in a study of direct and mediated effects alone, for which structural equation modeling was originally designed.

9.3.1 The statistical and the psychological calculus of total effects

To statistically compute total effects, we add the direct to the sum of the products of coefficients within each path. In statistical path analysis, the total effects are defined as the sum of the direct and indirect effects, where an indirect effect is the sum of the indirect effects for all of the alternative paths by which an effect can travel from its source to its destination. For each of the alternative paths the indirect effect is the product of the standardized coefficients for each of the linked paths. However, in psychological calculus of total effects, the total may equal more than sum of its parts. This can occur if there is a synergy

between two or more parts which reinforces and enhances them in connection with one another. There may, however, be a different sort of effect that weakens them when they are conjoined. This can occur with a partial or complete neutralization of the individual effects when two opposing units are combined. Although this results might be similar to a reinforcing or suppressing interaction effect, it may be an additive rather than a multiplicative one. Perhaps another example might be one where there was a trauma fixating the person on an event. If another observed the disaster, he or she might not be traumatized and might not respond the same way. However, the fixation of the event and the abreactions that follow may not be amenable to elementary arithmetic processing. Responses may effects taken to a power or some exponential rather than linear ones. Instead of being linear and additive, and easily amenable to linear structural equation analysis, they may nonlinear or multiplicative, or even intrinsically nonlinear.

9.3.2 Hypothesis 3 addendum: Total effects of cumulative external dose on male PTSD

According to the results in the MiPTSD panel of Table 6, the total effect of cumulative external dose in milliGrays on average PTSD from 1986 is not statistically significant by our robust estimates (cumdose1 standardized $\beta = -0.013$, p = 0.792). However, after a decade following Chornobyl, the reconstructed cumulative dose effect on PTSD is found to be statistically significant according to our robust estimates (cumdose2 standardized $\beta = 0.049, z = 3.05, p = 0.002$.) There is no path from cumulative external dose on male MiTPSD so we can only say that during wave 2 is there any evidence to support a significant total effect. This significant effect is positive so the relationship is a direct rather than an inverse one, although it is the sum of the direct and indirect effects by definition. We can say that there is partial confirmation of Hypothesis 3 by our male data in wave 2.

9.3.3 Hypothesis 4 addendum: Total effects of cumulative dose on male mental health measured by BSI

We examine Table 6 and find the BSI anxiety panel on page 47 and the BSI depression panel on page 54. We examine the anxiety panel on page 47 first. We find significant total effects in wave 1 and wave 2 on male BSI anxiety from cumulative external dose in waves 1 (cumdose1 stdized $\beta=0.047,\ p=0.005$) and2(cumdose2 stdized $\beta=0.068, p=0.002$). For the total effects impacting BSI depression, we find confirmation of significant wave 1 and wave 2 total effects. For wave 1, the cumdose1 total effect stdized $\beta=0.032,\ p=0.008$) and the cumdose2 total effect (stdized $\beta=0.047,\ p=0.002$). Consequently, we note that we do have partial confirmation of hypothesis 4 with our male total effects data.

9.3.4 Hypothesis 5 addendum: Total effects of perceived risk on BSI measures of mental health

When we turn to the BSIanx panel of Table 6, we find partial evidence to support Hypothesis 5 in the total effects of perceived Chornobyl related health risk (crhrw2 stdized $\beta=0.423,\ p=0.001$) and (crhrw3 stdized $\beta=0.062$, p=0.001)., although wave 1 effects are not statistically significant (crhrw1 stdized $\beta=0.067, p=.586$). When we turn to the BSIdep panel within the same table, we find similar results with no statistically significant wave 1 total effect, but statistically significant total effects for perceived risk originating with the other waves: (crhrw2 stdized $\beta=.267,\ p=0.000$) and (crhrw3 stdized $\beta=.037,\ p=0.001$).

9.3.5 Hypothesis 6 addendum: Total effects of perceived risk summary score on male Chornobyl PTSD

When we examine the total effects of perceived risk of exposure on Chornobyl PTSD, we also examine Table 6, but we have to turn to the MiPTSD panel. We find no statistically significant total effect originating in wave 1 (crhrw1 stdized $\beta = 0.058$, p = .127). However, we do find significant total effects originating with perceived risk in waves 2 (crhrw2 stdized $\beta = 0.182$, p = 0.000) and 3 (crhrw3 $\beta = .040$, p = 0.001). We therefore find partial confirmation of hypothesis 5 in our male data. In general we tend to find more confirmation of the perceived risk effects rather than the external cumulative dose effects.

9.3.6 Hypothesis 8 addendum: Total effects of risk of exposure on Nottingham health measures

The perceived risk total effects on Nottingham sleep exhibits significant total effects at all three waves. (crhrw1 stdized $\beta=0.117$, p=.000), (crhrw2 stdized $\beta=0.248$, p=.000) and (crhrw3 stdized $\beta=0.189$, p=.001). As for Nottingham energy level, we find significant total effects originating from perceived risk in waves 2 and 3, but not when they originate from wave 1. In wave 2 (crhrw2 stdized $\beta=0.262$, p=.001) and (crhrw3 stdized $\beta=0.039$, p=.001).

9.3.7 Cyclical dynamics and implications for persistence

As mentioned before there are two prominent feedback loops found in this model. When models are nonrecursive, they contained such loops. The loops have implications for persistence of effects. We have to make some assumptions for our models to hold and one assumption is that the models are stable. If this is so, the stability index will be less than one.

This means that the modulus will be less than unity. If the modulus is less than unity, it means that in an eigenvalue-eigenvector decomposition of the dynamics the absolute value of the largest eigenvalue will not exceed unity,

so the product of a unit impulse will not exceed one and become explosive or chaotic. In other words, the cyclical dynamic will converge over time.

If we graph the magnitude of the impulse as it iterates toward convergence, we should observe an exponential decay if the product of the impulses of the two inputs to the feedback are positive. If their product is negative, we could witness an undulation of sign amidst an exponential decline in absolute value. In either case, the time lapse before complete convergence of this process represents a delay in the diminution of effect and a potentiation of persistence for the time being.

For simulation of the cyclical response decay, we use the following impact formula:

$$(I - (b_{1t}b_{2t})L - (b_{1t}b_{2t})^2L^2 + (b_{1t}b_{2t})^3L^3 + \cdots)$$
(1)

if we use wave 0 as the starting point. If we use wave 0 as the starting point, we can imagine a unit impulse on each of the variables in the feedback loop revealing a 1 at time point 0, in which case we do not subtract the I. For emphasis of the simulation, we use time point 0 as the point of graphical origin.

When these feedback loops have paths that lead to MiPTSD, as both of them do, each may contribute to a persistence of the impact. If we re-examine the path diagram in Figure 1, we observe two such feedback loops. The first of these loops inheres in the reciprocal relationship between depww2 and ptsdww2 within wave 2. However, there is a path extending from ptsdww2 to MiPTSD.

The second feedback loop takes place in a more current setting—in a reciprocal relationship between BSIanx and WHPel. In both loops, we observe arrows extending from one of the variables to the other in the loop. We then observe an orange arrow extending from BSI anxiety to MiPtSD. In sum, both of these sources of protracted effect impact MiPTSD.

For illustration, we can simulate both of these sources of persistence. We simply assume a unit impulse in both of the effects at first. Let us consider the first depression-PTSD cycle in wave 2. We make a working assumption that the reciprocal relationship is the product of the total effects of one variable upon the other, partialling out all other effects. In a cyclical analysis, we examine the cyclical decay of the response of a unit impulse over time So Figure 2 represents the decay of an single impulse. Because one of the paths has a negative sign, there is a slight undulation in the diminution over time.

The second feedback loop, display in Figure 3, between anxiety and energy level exhibits similar feedback and even more undulation. Both wave 2 self-reported depression and PTSD and more current anxiety-energy level feedback loops serve to regulate the emotions reported by the male respondents, while permitting an exponential decline in the magnitude of the effect.

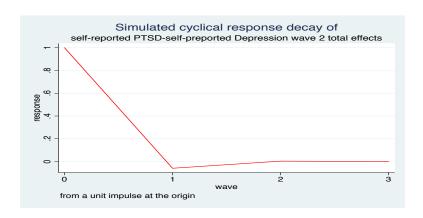


Figure 2: Cyclical decay Depressive-PTSD wave 2 feedback

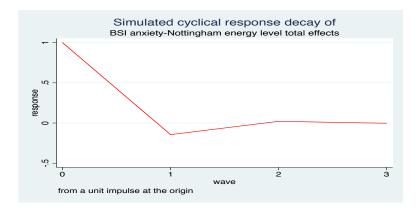


Figure 3: Decay rate of total effects in BSI anxiety and Nottinham energy level feedback

Table 6: Clustered-robust standardized Total effects among males

		(Std	. Err. ad	djusted for	r 339 clusters in id)
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
Structural					
crhrw1 <-					
crhrw1	.0039986	.00065	6.15	0.000	.0039986
crhrw2	.0086451	.0006171	14.01	0.000	.0084678
crhrw3	.006607	.0019986	3.31	0.001	.0064527
BSIanx	.0010013	.0001825	5.49	0.000	.0029794
depww3	.0001772	.0000312	5.68	0.000	.003361
depww2	.0001664	.0000298	5.58	0.000	.003046
whpsleep	.0013466	.0005333	2.52	0.012	.0358098
ptsdww1	.0072078	.0013541	5.32	0.000	.303881
anxww1	.0046736	.0007558	6.18	0.000	.1907989
injselfr	.5847711	.0999096	5.85	0.000	.3153132
fdferw1	.0070594	.001476	4.78	0.000	. 2966683
whpel	.0001491	.0000924	1.61	0.106	.0048344
cataw1	.5439699	.0536355	10.14	0.000	.2532061
anxww2	.0002775	.000025	11.09	0.000	.0055372
anxww3	.0002642	.0001148	2.30	0.021	.0053582
cumdose1	.016357	.0040042	4.08	0.000	.0294296
crhrw2 <-					
crhrw1	.7196373	.0383804	18.75	0.000	.7346998
crhrw2	0311756	.0100577	-3.10	0.002	0311756
crhrw3	.0058973	.0017839	3.31	0.001	.0058801
ptsdww2	0022657	.0017924	-1.26	0.206	0312088
depww2	.0114744	.0017186	6.68	0.000	.2143822
whpsleep	.0012019	.000476	2.52	0.012	.0326322
ptsdww1	.0064336	.0010632	6.05	0.000	.2769161
anxww1	.0071966	.0007989	9.01	0.000	.2999507
injselfr	.6489616	.0987088	6.57	0.000	.3572494
fdferw1	.006886	.0011021	6.25	0.000	. 2954398
whpel	.0001331	.0000824	1.61	0.106	.0044054
cumdose2	.020854	.0068371	3.05	0.002	.0574729
cataw1	.4240958	.0810167	5.23	0.000	.2015392
depww1	.0022967	.0006234	3.68	0.000	.0813685
anxww2	.0083309	.0012074	6.90	0.000	.1697316
anxww3	.0002358	.0001024	2.30	0.021	.0048828
cumdose1	.0144475	.0085224	1.70	0.090	.026538

Table 5 Total standardized effects among males - continued:

(Std. Err. adjusted for 339 clusters in id) Robust Std. Err. Std. Coef. Coef. z P>|z| crhrw3 <-.6272996 .0454238 .6423006 13.81 0.000 crhrw1 crhrw2 .9880545 .0336867 29.33 0.000 .9909414 crhrw3 .0049675 .0015027 3.31 0.001 .0049675 BSIanx .0007529 .0001372 5.49 0.000 .0022937 .0001332 depww3 .0000235 5.68 0.000 .0025874 ptsdww2 -.0023109 .0018266 -1.270.206 -.0319236 depww2 .0116919 .0017522 6.67 0.000 .2190845 whpsleep .0010124 .000401 2.52 0.012 .0275678 ptsdww1 .0054193 .0012806 4.23 0.000 .2339398 anxww1 .0093395 .0012781 7.31 0.000 .3904029 injselfr .6571543 .0978836 6.71 0.000 .3628165 fdferw1 .0061584 .0009668 6.37 0.000 .2649952 whpel .0001121 .0000694 1.61 0.106 .0037217 ${\tt cumdose2}$.0212493 .0069667 3.05 0.002 .0587336 .0847673 4.50 0.000 cataw1 .3817176 .1819302 3.68 depww1 .0023399 .0006352 0.000 .0831391 anxww2.0084638 .0012324 6.87 0.000 .1729434 0.021 .0001986 .0000863 2.30 .004125 anxww3 cumdose1 .0130935 .0085312 1.53 0.125 .0241211 ptsdww3 <-1.685493 .5567569 3.03 0.002 .132427 crhrw1 crhrw2 3.076713 .5538963 5.55 0.000 .2367774 crhrw3 .2263129 .068459 3.31 0.001 .0173658 fdferw2 .0007622 .000212 3.59 0.000 .0018112 BSTanx .0342994 .0062508 5.49 0.000 .0080184 depww3 .2381028 .0816227 2.92 0.004 .3548854 ptsdww2 .6872174 .0803886 8.55 0.000 .7284721 depww2 .1843746 .0938757 1.96 0.050 . 2651015 whpsleep .0461247 .0176672 2.61 0.009 .0963737 ptsdww1 5.75 .0943682 .016401 0.000 .312589 anxww1 .0766622 .0087764 8.74 0.000 .2458986 2.275621 .3749315 6.07 0.000 .0964064 iniselfr .0081912 7.78 .2105492 fdferw1 .0637675 0.000 .0051078 .0031636 1.61 0.106 .0130107 whpel cumdose2.3350888 .1098612 3.05 0.002 .0710701 cataw1 6.358303 .7152089 8.89 0.000 .2325359 depww1 .0369554 .010021 3.69 0.000 .1007572 0.023 anxww2.1800588 .0791801 2.27 .2823187 .262827 .0924623 2.84 0.004 .4188532 anxww3 .2548308 .1381239 0.065 .0360231 cumdose1 1.84

Table 5 Total standardized effects among males--continued:

(Std. Err. adjusted for 339 clusters in id) Robust Std. Err. Std. Coef. Coef. z P>|z| fdferw2 <-3.160255 1.151167 2.75 0.006 .1044881 crhrw1 crhrw2 .9268842 .3833708 2.42 0.016 .0300175 crhrw3 .1977894 .0598307 3.31 0.001 .0063868 BSIanx .0299764 .005463 5.49 0.000 .002949 .0053038 .0033267 depww3 .0009338 5.68 0.000 ptsdww2 .5831096 .1164628 5.01 0.000 .2601144 depww2 .209672 .0607963 3.45 0.001 .1268665 whpsleep .0159658 2.52 .0403113 0.012 .0354444 ptsdww1 .2157775 .058743 3.67 0.000 .3007804 anxww1 .1313155 .0766154 1.71 0.087 .1772499 injselfr 6.983559 1.925095 3.63 0.000 .1245025 fdferw1 .4716164 .0542672 8.69 0.000 .6552969 whpel .004464 .0027649 1.61 0.106 .0047851 ${\tt cumdose2}$ 3810652 .1249349 3.05 0.002 .0340112 24.92452 2.756466 9.04 0.000 .3835933 cataw1 0.034 depww1 .1564009 .073572 2.13 .1794458 anxww2.1543922 .0218896 7.05 0.000 .10187 0.021 anxww3 .0079082 .0034356 2.30 .0053035 cumdose1 .7482852 .2451216 3.05 0.002 .0445135 BSIanx <-.1993769 .3657668 0.55 0.586 .0670071 crhrw1 crhrw2 1.284877 .3863676 3.33 0.001 .4229714 crhrw3 .18859 .0570479 3.31 0.001 .0619015 fdferw2 .0183382 .0051016 3.59 0.000 .1864051 BSTanx -.1747678 .0318501 -5.49 0.000 -.1747678 depww3 .0432019 .0126647 3.41 0.001 .2754373 ptsdww2 .0032101 .0060694 0.53 0.597 .0145555 .0063346 depww2 .0414971 6.55 0.000 . 2552264 whpsleep .0384364 .0112884 .3435297 3.40 0.001 ptsdww1 .0064945 .0019112 3.40 0.001 .0920214 anxww1 .0117723 .0022539 5.22 0.000 .1615226 .3362003 .1421123 2.37 0.018 .0609257 iniselfr .0021838 8.72 .2690704 fdferw1 .0190509 0.000 whpel -.0260259 .0145181 -1.79 0.073 -.2835781 cumdose2.0754183 .0247264 3.05 0.002 .0684227 cataw1 .8505182 .1472452 5.78 0.000 .1330542 depww1 .0103958 .0027202 3.82 0.000 .1212415 0.000 anxww2.0216862 .0052252 4.15 .145447 -.0132018 .0139218 -0.95 0.343 -.0899954 anxww3 .0783243 .0279312 0.005 .0473611 cumdose1 2.80

Table 5 Total standardized effects among males-continued:

(Std. Err. adjusted for 339 clusters in id) Robust Std. Err. Std. Coef. Coef. z P>|z| depww3 <--.1330782 -2.524533 1.823937 -1.38 0.166 crhrw1 crhrw2 6.509918 1.981364 3.29 0.001 .3361284 crhrw3 .0365003 .0110412 3.31 0.001 .0018791 depww3 .0939995 .0226924 4.14 0.000 .0939995 -.1182772 .0931602 -1.27 ptsdww2 0.204 -.0841194 depww2 .5961176 .1162046 5.13 0.000 .5750685 whpsleep .0074391 .0029463 2.52 0.012 .0104285 ptsdww1 .0398199 1.74 .0884961 .0228431 0.081 anxww1 .1754403 .0247017 7.10 0.000 .3775552 injselfr .9832649 .5994658 1.64 0.101 .0279481 fdferw1 .0755332 .0171051 4.42 0.000 .1673279 whpel .0008238 .0005102 1.61 0.106 .0014079 1.083405 .3552018 3.05 0.002 .154168 cumdose2 cataw1 5.724116 1.201329 4.76 0.000 .1404539 .1192157 .0323824 3.68 0.000 .2180764 depww1 anxww2 .5518212 .056219 9.82 0.000 .5804973 anxww3.2103843 .1510012 1.39 0.164 .2249477 .2417886 .3939774 cumdose1 0.61 0.539 .022932 ptsdww2 <-.8587135 .0476045 18.04 0.000 .0636472 crhrw1 crhrw2 1.202942 .6141333 1.96 0.050 .0873332 crhrw3 .1015311 .0307128 3.31 0.001 .0073496 BSIanx .0153878 .0028043 5.49 0.000 .0033936 depww3 .0027226 .0004793 5.68 0.000 .0038282 ptsdww2 -.0653878 .0516249 -1.270.205 -.0653878 depww2 .3304162 .0974787 3.39 0.001 .4481812 whpsleep .020693 .0081957 2.52 0.012 .0407877 4.92 ptsdww1 .1107649 .0224962 0.000 .3461236 anxww1 .0939971 .0126864 7.41 0.000 .2844265 injselfr 1.592997 .3460567 4.60 0.000 .0636652 fdferw1 .0799331 .0113821 7.02 0.000 .2489785 .0022915 .0014193 1.61 0.106 .0055065 whpel .1968813 ${\tt cumdose2}$.6005099 3.05 0.002 .1201513 8.160969 .8766004 9.31 0.000 .2815605 cataw1 .0661102 .0179509 3.68 0.000 .1700391 depww1 anxww2 .2382549 .0349034 6.83 0.000 .3524102 .0040595 .0017636 2.30 0.021 .0061031 anxww3 .2893085 1.22 0.224 .0385808 cumdose1 .2377172

Table 5 Total standardized effects among males--continued:

(Std. Err. adjusted for 339 clusters in id) Robust Std. Err. Std. Coef. Coef. z P>|z| depww2 <--2.287268 .1215208 -18.82 0.000 -.1249843 crhrw1 crhrw2 -3.055427 .7884756 -3.88 0.000 -.1635362 crhrw3 .0293207 .0088694 3.31 0.001 .0015648 BSIanx .0044438 .0008098 5.49 0.000 .0007225 .0007862 depww3 .0001384 5.68 0.000 .000815 ptsdww2 -.1789613 .1409185 -1.270.204 -.131937 depww2 -.0983089 .018801 -5.23 0.000 -.0983089 whpsleep .0059758 .0023668 .0086838 2.52 0.012 ptsdww1 .0319872 .0321473 1.00 0.320 .0736908 anxww1 .2047368 .0331259 6.18 0.000 .4567297 -.5745953 injselfr .5288702 -1.090.277 -.01693 fdferw1 .1129492 .0251617 4.49 0.000 .2593737 whpel .0006618 .0004099 1.61 0.106 .0011723 ${\tt cumdose2}$ 1.638765 .5372804 3.05 0.002 .2417311 8.57216 5.91 0.000 cataw1 1.451326 .2180359 0.000 depww1 .1803165 .0489811 3.68 .3419188 anxww2.6442368 .0957461 6.73 0.000 .7025216 0.021 .0011723 .0005093 2.30 .0012994 anxww3 cumdose1 .3565501 .601141 0.59 0.553 .0350541 whpsleep <crhrw1 3.116858 .5066281 6.15 0.000 .1172036 crhrw2 6.738654 .4810148 14.01 0.000 .2481995 crhrw3 5.150005 1.557861 3.31 0.001 .1891334 fdferw2 .0173446 .0048252 3.59 0.000 .0197263 BSTanx .7805213 .1422441 5.49 0.000 .0873299 depww3 .1381003 .024313 5.68 0.000 .0985128 ptsdww2 -.0149298 .0196229 -0.76 0.447 -.0075744 .0232355 depww2 .1297386 5.58 0.000 .0892801 whpsleep .0496185 .0121593 4.08 0.000 .0496185 ptsdww1 .0796119 0.000 .012131 6.56 .1262119 anxww1 .143925 .0179624 8.01 0.000 .2209455 6.448635 1.020859 6.32 0.000 .1307519 iniselfr .0425018 fdferw1 .1783957 4.20 0.000 .2819114 .1162328 .0719913 1.61 0.106 .1417014 whpel .2357914 cumdose2.0773059 3.05 0.002 .0239348 cataw1 9.205323 1.259585 7.31 0.000 .1611248 depww1 .0279272 .0072786 3.84 0.000 .0364418 0.000 anxww2.2162829 .0195041 11.09 .1623013 .205913 .0894564 2.30 0.021 .1570544 anxww3 1.630627 .3287832 4.96 0.000 .1103209 cumdose1

Table 5 Total standardized effects among males--continued:

(Std. Err. adjusted for 339 clusters in id) Robust Std. Err. P>|z| Std. Coef. Coef. z ptsdww1 <-.0961755 .0140344 .591687 6.15 0.000 crhrw1 crhrw2 1.279229 .0913132 14.01 0.000 .0297203 crhrw3 .9776482 .2957356 3.31 0.001 .0226475 fdferw2 .0032926 .000916 3.59 0.000 .0023621 BSIanx .0270028 0.000 .1481698 5.49 .0104572 .0117963 depww3 .0262162 .0046154 5.68 0.000 ptsdww2 -.0028342 .0037251 -0.76 0.447 -.000907 .0044109 0.000 .0106907 depww2 .0246288 5.58 whpsleep .1992537 .0789169 2.52 0.012 .1256851 ptsdww1 .0665608 .0083717 7.95 0.000 .0665608 .1123399 0.000 anxww1 .1160132 .0275504 4.21 injselfr 4.485302 1.353654 3.31 0.001 .0573653 .3331752 .0706293 4.72 0.000 .3321073 fdferw1 whpel .022065 .0136664 1.61 0.106 .0169678 .0447613 .0146753 3.05 0.002 .002866 cumdose2 9.57 cataw1 53.98496 5.639715 0.000 .5960375 depww1 .0053015 .0013817 3.84 0.000 .0043637 .0410579 .0037025 11.09 0.000 .0194346 anxww2 anxww3 .0390894 .0169819 2.30 0.021 .0188063 1.709827 .3426556 4.99 0.000 .0729681 cumdose1 anxww1 <crhrw1 .3432234 .0557891 6.15 0.000 .0084072 .0178038 crhrw2 .7420497 .0529686 14.01 0.000 crhrw3 .5671102 .1715491 3.31 0.001 .0135669 BSTanx .0859497 .0156637 5.49 0.000 .0062643 depww3 .0152074 .0026773 5.68 0.000 .0070665 depww2 .0142866 .0025587 5.58 0.000 .0064042 .0752908 whpsleep .1155823 .0457778 2.52 0.012 .6186862 .0762856 8.11 0.000 .6389162 ptsdww1 .0672965 4.21 0.000 .0672965 anxww1 .0159813 injselfr 2.601816 .7852219 3.31 0.001 .0343643 .1932669 .0409703 4.72 0.000 .1989467 fdferw1 whpel .0127994 .0079276 1.61 0.106 .0101645 cataw1 41.60148 6.396103 6.50 0.000 .4743326 0.000 .0238167 .0021478 11.09 .0116421 anxww2 anxww3 .0226748 .0098508 2.30 0.021 .0112658 1.267559 .2751129 4.61 0.000 .0558628 cumdose1

Table 5 Total standardized effects among males--continued:

(Std. Err. adjusted for 339 clusters in id) Robust Std. Err. Coef. z P>|z| Std. Coef. MiPTSD <-.7474093 .489867 0.127 .0583675 crhrw1 1.53 crhrw2 2.380813 .4999053 4.76 0.000 .1821133 crhrw3 .5266522 .1593107 3.31 0.001 .0401673 ptsdww3 .0144454 .0059095 2.44 0.015 .014358 fdferw2 .1187235 .022964 5.17 0.000 .280417 4.05 0.000 BSIanx .9947797 .2454783 .2311499 depww3 .102776 .017698 5.81 0.000 .1522574 ptsdww2 .1712848 .0565937 3.03 0.002 .1804682 depww2 .1287108 .0195378 6.59 0.000 .1839456 whpsleep .1073366 .0277684 3.87 0.000 .2229134 0.000 ptsdww1 .0894304 .012741 7.02 .2944396 anxww1 .1224487 .0149811 8.17 0.000 .3903838 6.658473 .9516831 0.000 .2803777 iniselfr 7.00 fdferw1 .1139829 .0105995 10.75 0.000 .3740733 .0207612 -0.79 whpel -.0163513 0.431 -.0413987 cumdose2 .2339235 .0766935 3.05 0.002 .0493133 cataw1 8.742087 1.06122 8.24 0.000 .3177803 depww1 .1054981 .0219969 4.80 0.000 .2858951 BSIdep .4610688 .2328681 1.98 0.048 .1111292 anxww2 .1467996 .0123129 11.92 0.000 .2287774 .1490414 anxww3 .0940918 .0484111 1.94 0.052 cumdose1 -.0926048 .3511796 -0.26 0.792 -.013011 injselfr <-.0027842 .0008422 3.31 0.001 .0050429 crhrw3 whpsleep .0005674 .0002247 2.52 0.012 .0279864 ptsdww1 .0030374 .0003745 8.11 0.000 .2374916 .0052399 .0006306 8.31 0.000 .3967249 anxww1 injselfr .0127736 .003855 3.31 0.001 .0127736 fdferw1 .0009488 .0002011 4.72 .0739505 0.000 whpel .0000628 .0000389 1.61 0.106 .0037782 cataw1 .2042417 .0314015 6.50 0.000 .1763142 .0001113 .0000484 2.30 0.021 .0041876 anxww3 cumdose1 .0062231 .0015914 3.91 0.000 .0207648 fdferw1 <crhrw3 .168046 .0508334 3.31 0.001 .0039054 .0342493 .0135649 2.52 0.012 .0216732 whpsleep ptsdww1 .0226049 .1833289 8.11 0.000 .1839184 .0871236 0.000 .307232 anxww1 .316261 3.63 .1496896 injselfr 11.66648 4.241641 2.75 0.006 fdferw1 .0572688 .0121403 4.72 0.000 .0572688 .0037927 .0023491 1.61 0.106 .0029259 whpel cataw1 41.26583 5.548053 7.44 0.000 .457073 anxww3 .006719 .002919 2.30 0.021 .003243 1.151328 .2723676 4.23 0.000 .0492917 cumdose1

Table 5 Total standardized effects among males--continued:

(Std. Err. adjusted for 339 clusters in id) Robust Coef. Std. Err. Std. Coef. z P>|z| whpel <-1.355828 2.458451 0.55 0.581 .0418199 crhrw1 crhrw2 8.66486 2.596751 3.34 0.001 .2617843 crhrw3 1.294468 .3915727 3.31 0.001 .0389948 fdferw2 .1232384 .0342843 3.59 0.000 .1149687 BSIanx 5.545816 1.010683 5.49 0.000 .5089768 .0850865 depww3 .2908599 3.42 0.001 .1701909 ptsdww2 .0214747 .0408607 0.53 0.599 .0089367 depww2 .2793665 .0425708 6.56 0.000 .1576937 whpsleep .2638245 .0759796 3.47 0.001 .2164061 ptsdww1 .0742197 .0149851 4.95 0.000 .0965152 .1660355 .1318553 anxww1 .0181447 7.27 0.000 injselfr 12.46337 2.766079 4.51 0.000 .207286 .1374913 .0153267 8.97 0.000 .1782207 fdferw1 whpel -.1741346 .0977597 -1.78 0.075 -.1741346 .5077305 3.05 0.002 cumdose2 .166463 .0422755 cataw1 7.769508 1.175369 6.61 0.000 .1115504 depww1 .0699613 .0183042 3.82 0.000 .0748834 .1468044 .0350811 4.18 0.000 .0903635 anxww2 anxww3 -.0875302 .0937941 -0.93 0.351 -.0547619 .5886697 0.007 .0326685 cumdose1 .21927 2.68 cumdose2 <-.8928449 cumdose1 1.339597 .2873117 4.66 0.000 cumdose3 <-1.087217 .0775735 14.02 0.000 1.019854 cumdose2 cumdose1 1.412499 .3182587 4.44 0.000 .8831041 cataw1 <-.026806 .0063253 4.24 0.000 .1036125 cumdose1 depww1 <-.2739163 .0828589 0.001 .0077091 crhrw3 3.31 whpsleep .0558267 .0221108 2.52 0.012 .0427827 .2988277 .0368462 0.000 .3630531 ptsdww1 8.11 .0701918 .6064728 anxww1 .5155081 0.000 7.34 injselfr 3.461758 1.18969 2.91 0.004 .0537903 fdferw1 .2957322 .0540333 5.47 0.000 .3581407 whpel .0061821 .003829 1.61 0.106 .0057758 34.22513 5.612799 0.000 .4590872 cataw1 6.10 .0064016 .010952 .004758 2.30 0.021 anxww3 cumdose1 .9910439 .2395578 4.14 0.000 .0513834

Table 5 Total standardized effects among males--continued:

(Std. Err. adjusted for 339 clusters in id) Robust Std. Err. ${\tt Coef.}$ P>|z| Std. Coef. z BSIdep <-.1687895 .2158677 .0546885 crhrw1 0.78 0.434 crhrw2 .8428077 .2272037 3.71 0.000 .2674745 .037013 crhrw3 .1169682 .0353825 3.31 0.001 .1292007 ptsdww3 .0313303 .012817 2.44 0.015 .0106709 .0029686 3.59 0.000 .1045694 fdferw2 .1048438 0.000 BSIanx .4801961 4.58 .4629382 depww3 .0325499 .008423 3.86 0.000 .2000665 ptsdww2 .023393 .0051353 4.56 0.000 .1022601 depww2 .0298763 .0047461 6.29 0.000 .1771491 whpsleep .0238392 .0066027 3.61 0.000 .2054082 ptsdww1 0.000 .0978192 .007161 .0014019 5.11 anxww1 .0099851 .0015657 6.38 0.000 .1320769 injselfr .4112717 .081291 5.06 0.000 .0718514 fdferw1 .0131929 .0014566 9.06 0.000 .1796365 -.0007507 .0117731 -0.06 0.949 -.0078861 whpel ${\tt cumdose2}$ 3.05 .0542983 .0178021 0.002 .0474913 cataw1 .7221498 .1069494 6.75 0.000 .1089123 depww1 .0071949 .001862 3.86 0.000 .0808954 anxww2 .0182472 .0042399 4.30 0.000 .1179838 .0005865 .0090887 0.06 0.949 .0038545 anxww3 cumdose1 .0543423 .0204311 2.66 0.008 .0316787 anxww2 <-.0451667 3.31 0.001 .0073073 crhrw3 .1493128 whpsleep .0304313 .0120527 2.52 0.012 .0405528 ptsdww1 .1628921 .020085 8.11 0.000 .34413 anxww1 .2810053 .035404 7.94 0.000 .5748622 injselfr .6850244 .2067387 3.31 0.001 .0185091 4.72 0.000 fdferw1 .0508847 .010787 .1071557 whpel .0033699 .0020872 1.61 0.106 .0054747 0.000 .2554828 10.95313 1.684011 6.50 cataw1 anxww3 .00597 .0025936 2.30 0.021 .0060679 .0300885 cumdose1 .3337319 .0838318 3.98 0.000

Table 5 Total standardized effects among males--continued:

		(Std	. Err. a	adjusted	for 339 clusters in id)
	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
anxww3 <-					
crhrw1	8160364	.8183238	-1.00	0.319	0402316
crhrw2	3.354694	.8724393	3.85	0.000	.1619997
crhrw3	.1026893	.0310632	3.31	0.001	.0049445
depww3	.4894047	.118353	4.14	0.000	.45772
ptsdww2	0330717	.0261882	-1.26	0.207	021998
depww2	.1676607	.0995959	1.68	0.092	.1512693
whpsleep	.020929	.0082892	2.52	0.012	.0274399
ptsdww1	.1120284	.0165986	6.75	0.000	. 2328543
anxww1	.2241998	.0271764	8.25	0.000	.4512509
injselfr	.913	.3253423	2.81	0.005	.0242708
fdferw1	.051668	.0087445	5.91	0.000	.1070492
whpel	.0023176	.0014355	1.61	0.106	.0037045
cumdose2	.3047125	.0999021	3.05	0.002	.0405532
cataw1	8.17719	1.334156	6.13	0.000	.1876554
depww1	.0335656	.00911	3.68	0.000	.057425
anxww2	.7786876	.1091155	7.14	0.000	.76612
anxww3	.0971265	.067635	1.44	0.151	.0971265
cumdose1	.2685742	.136707	1.96	0.049	.0238233

10 Female PTSD path model

In Figure 4, we present the path diagram for the female Chornobyl PTSD model. This diagram shows the statistically significant paths that extend to PTSD among the females in our sample. To facilitate explanation the paths have been color-coded. Boxes represent variables and arrows represent paths. The blue boxes with black borders in the middle are self-reported depression, whereas the blue boxes along the bottom are cumulative external dose variables. The latter have red arrows projecting from them, whereas the former have blue arrows heading out of them. Anxiety variables are orange. Perceived risk of exposure area yellow boxes with purple arrows, whereas PTSD are light-kaki or sandcolored boxes. Catastrophic experience is white with an olive border, whereas vodka consumption is white with a blue border. Fear of consuming contaminated food is colored red with forest green arrows emanating from them. Two BSI measures of psychological health are included-namely, BSIanx, colored orange, and BSI depression, stone. The Nottingham weighted health profile measures of physical health behavior include sleep and energy level, are colored lime and cyan, respectively. The path coefficients, which define this model, are contained in Table 7. The clustered-robust versions for robust direct, indirect, and total effects, are respectively contained in Tables 8, 9, and 10.

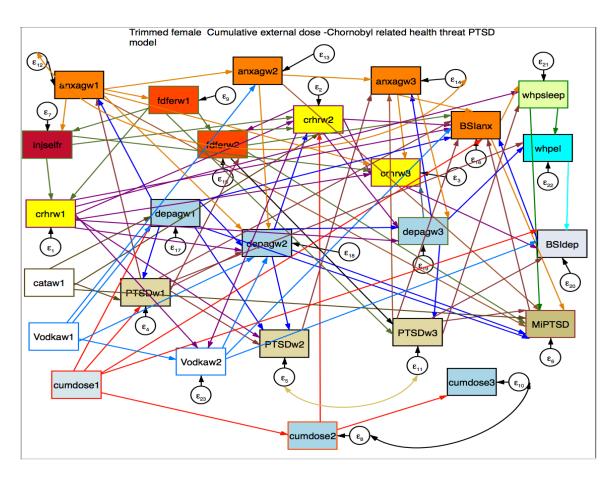


Figure 4: Pathways to PTSD among females residents of Kiev and Zhitomyr Oblasts

10.1 New variables

As the reader may have noticed, there are a few extra variables in the female model—including, Vodkaw1 and Vodkaw2, which are the average number of vodka drinks per week during wave 1 and wave 2. These variables have implications for hypotheses 12 and 20, both of which pertain to substance abuse.

10.2 Model goodness of fit

To help the reader interpret the path coefficients, Table 8 lists the parameter estimates from which the path diagram was developed. The non-robust version of the model is consistent with the data LR test of model vs. saturated: $\chi^2(231) = 253.13$, $Prob > \chi^2 = 0.1517$.

10.3 Model stability and cyclical dynamics

Inspection of the path diagram in Figure 4 reveals the presence of feedback cycles indicating that the model is nonrecursive. A check of the the stability index assures us that the model is neither globally nonstationary nor chaotic. All moduli reside within the unit circle, with the stability index = 0.5823, satisfying the condition for stability. A closer inspection reveals that within this model exhibits the same feedback loops between depression and ptsd self-reports during wave 2 and more current BSI anxiety and Nottingham energy level that we found in the male model. It may be that depression and PTSD are intertwined in a way that is similar to anxiety and energy level within PTSD. These interrelationships invite future inquiry into the dynamics of their interaction within the PTSD syndrome. In Table 7 we present the parameter estimates shown in the path diagram for women. Then, we begin to analyze the direct effects and hypothesis tests relating to them.

Table 7: PTSD path model for female respondents

Endogenous variables

Observed: crhrw1 crhrw2 crhrw3 PTSDw2 BSIanx depagw2 depagw3 whpsleep

Vodkaw2 fdferw2 BSIdep PTSDw1 anxagw1 whpel anxagw3 MiPTSD injselfr cumdose2 depagw1 cumdose3 fdferw1 PTSDw3 anxagw2

Exogenous variables

Observed: cumdose1 cataw1 Vodkaw1

Structural equation model Number of obs = 362

Estimation method = ml

Log likelihood = -25847.197

	Coef.	OIM Std. Err.	z	P> z	[95% Conf	. Interval]
Structural						
crhrw1 <-						
injselfr	.6298492	.1021273	6.17	0.000	.4296834	.8300149
fdferw1	.0026622	.0012513	2.13	0.033	.0002096	.0051148
_cons	3997994	.090004	-4.44	0.000	5762039	2233949
crhrw2 <-						
crhrw1	.5589593	.0318773	17.53	0.000	.4964809	.6214377
depagw2	.0078957	.0014856	5.31	0.000	.0049841	.0108073
fdferw2	.0068324	.0013254	5.15	0.000	.0042346	.0094302
injselfr	.5176358	.0646334	8.01	0.000	.3909567	.644315
cumdose2	.0406358	.020436	1.99	0.047	.000582	.0806896
cataw1	4578471	.0898574	-5.10	0.000	6339644	2817299
_cons	424409	.0562923	-7.54	0.000	5347398	3140783
crhrw3 <-						
crhrw1	0728879	.022209	-3.28	0.001	1164167	0293592
crhrw2	.9729672	.02583	37.67	0.000	.9223414	1.023593
depagw3	.0020999	.0010458	2.01	0.045	.0000502	.0041495
anxagw1	0014199	.0004313	-3.29	0.001	0022651	0005746
anxagw3	.0021104	.0009343	2.26	0.024	.0002793	.0039415
injselfr	.1455887	.0352983	4.12	0.000	.0764052	.2147722
_cons	1116123	.0280836	-3.97	0.000	1666552	0565694
PTSDw2 <-						
crhrw1	1.296714	.3385422	3.83	0.000	.6331836	1.960245
depagw2	.2355194	.0201961	11.66	0.000	. 1959358	.275103
PTSDw1	.0629863	.0112964	5.58	0.000	.0408458	.0851268
depagw1	047698	.0151466	-3.15	0.002	0773849	0180112
_cons	.4914383	.4302896	1.14	0.253	3519138	1.33479

Table 7 Female PTSD model continued:

	a	OIM		D> 1 - 1	F0F%	T., t
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval
BSIanx <-						
crhrw1	-1.205418	.2622247	-4.60	0.000	-1.719369	69146
crhrw2	1.02332	.3072473	3.33	0.001	.4211261	1.62551
Vodkaw2	.3810583	.1819953	2.09	0.036	.0243541	.737762
fdferw2	.0156305	.0071738	2.18	0.029	.00157	.02969
BSIdep	.5132076	.0564726	9.09	0.000	.4025232	.623891
PTSDw1	.0134713	.005868	2.30	0.022	.0019703	.024972
anxagw3	.0268248	.007832	3.43	0.001	.0114744	.042175
MiPTSD	1178986	.034702	-3.40	0.001	1859133	049883
depagw1	.0206629	.0071437	2.89	0.004	.0066615	.034664
PTSDw3	.0783304	.0234477	3.34	0.001	.0323738	.12428
cumdose1	.605108	.3122593	1.94	0.053	006909	1.21712
_cons	8.010522	1.339661	5.98	0.000	5.384835	10.6362
depagw2 <- crhrw1	-1.812218	.746836	-2.43	0.015	-3.27599	348446
Vodkaw2	4.093021	1.721746	2.38	0.017	.7184605	7.46758
PTSDw1	0628488	.0258004	-2.44	0.015	1134166	01228
anxagw1	1178432	.0282493	-4.17	0.000	1732108	062475
depagw1	.3895504	.0329912	11.81	0.000	.3248889	.454211
anxagw2	.4846822	.0348573	13.90	0.000	.416363	.553001
Vodkaw1	-4.883456	1.58509	-3.08	0.000	-7.990175	-1.77673
_cons	3.363915	.8779034	3.83	0.002	1.643256	5.08457
J						
depagw3 <- crhrw1	-5.755332	1.03744	-5.55	0.000	-7.788676	-3.72198
crhrw2	6.068978	1.146979	5.29	0.000	3.82094	8.31701
depagw2	.6111602	.0505339	12.09	0.000	.5121155	.710204
anxagw3	.1358158	.0490931	2.77	0.006	.0395952	.232036
		.8338185	6.12	0.000	3.468912	6.7374
_cons	5.103166	.0330105	0.12	0.000	3.400912	0.1314
whpsl~p <-						
crhrw1	6.484954	1.471877	4.41	0.000	3.600128	9.3697
BSIanx	4.065195	.4351435	9.34	0.000	3.212329	4.91806
PTSDw3	.3567571	.1720383	2.07	0.038	.0195683	.69394
_cons	-12.82962	3.994182	-3.21	0.001	-20.65807	-5.00116
Vodkaw2 <-						
crhrw1	1062609	.0311858	-3.41	0.001	167384	045137
crhrw2	.0722496	.0341707	2.11	0.034	.0052762	.139222
Vodkaw1	.8174944	.0210268	38.88	0.000	.7762826	.858706
			55.55	3.000		

Table 7 Female PTSD model continued:

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	Interval]
fdferw2 <-						
crhrw2	-3.804558	1.692037	-2.25	0.025	-7.12089	4882255
PTSDw1	.0918138	.0360968	2.54	0.011	.0210653	.1625623
fdferw1	.3463298	.0334706	10.35	0.000	.2807286	.411931
_cons	1.255381	1.69579	0.74	0.459	-2.068307	4.579069
BSIdep <-						
crhrw3	.8274069	.1923626	4.30	0.000	.4503832	1.204431
Vodkaw2	.7577383	.1775118	4.27	0.000	.4098216	1.105655
whpel	.0332202	.0050997	6.51	0.000	.023225	.0432153
PTSDw3	.0530356	.0196434	2.70	0.007	.0145352	.0915359
cumdose1	.7809546	.3032565	2.58	0.010	.1865827	1.375326
_cons	7.652928	.2552862	29.98	0.000	7.152576	8.153279
PTSDw1 <-						
depagw1	.5460726	.0510132	10.70	0.000	.4460885	.6460567
cumdose1	5.452116	2.591673	2.10	0.035	.3725301	10.5317
cataw1	32.62637	4.368667	7.47	0.000	24.06394	41.1888
_cons	5.575064	1.708699	3.26	0.001	2.226076	8.924052
anxagw1 <-						
PTSDw1	.3374853	.0496902	6.79	0.000	.2400943	.4348764
depagw1	.5402776	.0584905	9.24	0.000	.4256382	.654917
_cons	9.536504	1.627139	5.86	0.000	6.34737	12.72564
whpel <-						
depagw3	.1939363	.0733963	2.64	0.008	.0500822	.3377903
whpsleep	.4760098	.0514682	9.25	0.000	.3751339	.5768857
PTSDw1	.1552063	.0463111	3.35	0.001	.0644382	.2459743
_cons	14.03258	2.190631	6.41	0.000	9.739023	18.32614
anxagw3 <-						
PTSDw2	3630256	.0831645	-4.37	0.000	526025	2000262
depagw3	.4373053	.039199	11.16	0.000	.3604767	.514134
PTSDw3	.217492	.0810011	2.69	0.007	.0587329	.3762512
anxagw2	.6675678	.0346849	19.25	0.000	.5995867	.7355489
_cons	.9541846	.7257864	1.31	0.189	4683307	2.3767

Table 7 Female PTSD model continued:

	Coef.	OIM Std. Err.	z	P> z	[95% Conf.	[Interval]
MiPTSD <-						
	1 070067	0505154	7 02	0 000	1 402146	0 47000
BSIanx	1.978067	.2525154	7.83	0.000	1.483146	2.472988
depagw2	.1178757	.0359952	3.27	0.001	.0473264	.18842
whpsleep	.0841461	.0183677	4.58	0.000	.0481461	.120146
fdferw2	.0845705	.0195624	4.32	0.000	.0462288	.122912
anxagw1	.058889	.0193324	3.05	0.002	.0209981	.096779
depagw1	0794127	.024748	-3.21	0.001	1279178	030907
PTSDw3	.1904562	.0625339	3.05	0.002	.0678919	.313020
anxagw2	1435899	.0295032	-4.87	0.000	2014151	085764
cataw1	-3.761856	1.531026	-2.46	0.014	-6.762612	761099
_cons	28.0328	1.961334	14.29	0.000	24.18865	31.8769
injse~r <-						
anxagw1	.002516	.0006944	3.62	0.000	.0011549	.00387
fdferw1	.0015706	.0006476	2.43	0.015	.0003013	.0028
_cons	.5726202	.0342634	16.71	0.000	.5054652	.639775
cumdo~2 <-						
cumdose1	2.188894	.0649526	33.70	0.000	2.061589	2.31619
_cons	.1613576	.0418234	3.86	0.000	.0793853	.243329
depagw1 <-						
cumdose1	11.71117	2.509191	4.67	0.000	6.793248	16.629
cataw1	12.05375	4.301514	2.80	0.005	3.622934	20.4845
Vodkaw1	6.995877	1.350607	5.18	0.000	4.348736	9.64301
	4.983128	1.697213	2.94	0.000	1.656653	8.30960
_cons	4.903120	1.097213	2.94	0.003	1.050055	0.30900
cumdo~3 <-						
cumdose2	1.231235	.0130516	94.34	0.000	1.205654	1.25681
_cons	.0990387	.0195777	5.06	0.000	.060667	.137410
fdferw1 <-						
anxagw1	.2979369	.0541364	5.50	0.000	.1918316	.404042
_cons	30.74794	2.262812	13.59	0.000	26.31291	35.1829
PTSDw3 <-						
depagw3	.1537033	.0180973	8.49	0.000	.1182333	.189173
fdferw2	.0348694	.0158123	2.21	0.027	.0038779	.06586
fdferw1	.0214425	.0103123	1.99	0.047	.0002988	.042586
	1.400652	.5634926	2.00		.2962263	2.50507

Table 7 Female PTSD model continued:

		OIM				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
anxagw2 <-						
anxagw1	. 2843984	.029989	9.48	0.000	.225621	.3431758
Vodkaw1	2.24764	1.037063	2.17	0.030	.2150335	4.280246
_cons	4.49094	1.254067	3.58	0.000	2.033015	6.948866
Variance						
e.crhrw1	.7840106	.058275			.6777236	.906966
e.crhrw2	.2812911	.0210931			.2428438	.3258254
e.crhrw3	.0706794	.0052536			.0610975	.08176
e.PTSDw2	47.62305	3.541211			41.16447	55.0949
e.BSIanx	8.950395	1.314512			6.71165	11.9359
e.depagw2	170.2314	12.65742			147.1463	196.9382
e.depagw3	162.6707	14.51593			136.5691	193.763
e.whpsleep	688.7138	51.19913			595.3335	796.7413
e.Vodkaw2	.1633878	.0121496			.1412289	.1890234
e.fdferw2	495.8142	38.51755			425.7876	577.357
e.BSIdep	9.6512	.721683			8.335495	11.17458
e.PTSDw1	680.1664	50.55637			587.9574	786.836
e.anxagw1	724.1007	53.83747			625.9093	837.6963
e.whpel	826.0209	61.58114			713.7278	955.9814
e.anxagw3	116.3553	8.865389			100.2147	135.095
e.MiPTSD	79.6257	7.036226			66.96313	94.68273
e.injselfr	.2003826	.0148943			.1732171	.231808
e.cumdose2	.4605615	.0342333			.398124	.5327913
e.depagw1	672.1855	49.96316			581.0585	777.6039
e.cumdose3	.0890991	.0067161			.076862	.1032849
e.fdferw1	1319.752	98.09638			1140.835	1526.728
e.PTSDw3	58.45368	4.353591			50.51437	67.6408
e.anxagw2	392.1095	29.14527			338.9519	453.6038
Covariance						
e.PTSDw2						
e.PTSDw3	26.56358	3.119844	8.51	0.000	20.4488	32.67836
e.anxagw1						
e.anxagw3	-50.42997	17.30637	-2.91	0.004	-84.34984	-16.510
e.cumdose2						
e.cumdose3	.0427649	.0124315	3.44	0.001	.0183995	.0671303

LR test of model vs. saturated: chi2(231) = 253.13, Prob > chi2 = 0.1517 Stability index = .5822846

10.4 Direct external dose effects for females

10.4.1 Hypothesis 3 Dose-PTSD tests

Hypothesis 3 postulates a direct relationship between between cumulative external dose in mGys and MiPTSD. When we examine the direct robust effects in Table 8 to test hypothesis 3 for females. We find no evidence on page 74 in the MiPTSD panel of a statistically significant clustered-robust direct effect originating with cumulative external dose and pointing to Chornobyl PTSD. There is no direct path from cumdose1 and no direct path from cumdose2. Nor is there a direct path from cumdose3 in the female direct effects table under the MiPTSD panel. In sum, we find no evidence in this model to support hypothesis 3 among the female subsample.

10.4.2 Hypothesis 4: Direct dose BSI mental health effects

Hypothesis 4 suggests the existence of a direct effect between reconstructed exposure and BSI mental health measures. In Table 8 we have to examine the BSI anxiety and BSI depression panels. In the BSI anxiety panel on page 69, we find no significant path for cumdose1 and no paths for either cumdose2 or cumdose3. When we turn to the BSI depression panel of the same table, on page 72, we do find a statistically significant positive standardized path coefficient for wave 1 only for cumdose1 (cumdose1 stdized $\beta = .115$, p = 0.023). Therefore, there is partial confirmation of hypothesis 4, insofar as there is a single direct path from cumulative external dose to BSI depression in 1986.

10.4.3 Hypothesis 5: Direct perceived risk of exposure and BSI mental health measures for females

Hypothesis 5 suggests a direct relationship between perceived risk and female BSI mental health measures. To test this hypothesis we have to examine the BSI anxiety panel on page 69 of Table 8 and the BSI depression panel on page 74. In the BSI anxiety panel we fine a significant negative relationship between perceived risk during wave one which becomes significant and positive by wave 2. This may reflect the original lack of information about the situation at first (crhrw1 stdized $\beta = -0.311$, p = 0.001) and (crhrw2 stdized $\beta = .243$ p = 0.012). It may also reflect the possibility that as a clearer perspective became possible, more doubts about the danger arose.

10.4.4 Hypothesis 6 Perceived risk - PTSD tests

Hypothesis 6 posits a direct relationship between perceived Chornobyl health risk and Chornobyl PTSD. If we examine the MiPTSD panel on page 72 in Table 9 for women, we find not direct path from perceived risk of exposure, regardless of the time periods covered by our study. Therefore, we find no evidence to support hypothesis 6 that Chornobyl related health risk explains or predicts PTSD among our female respondents.

10.4.5 Hypothesis 8: Direct effects of perceived risk to Nottingham health measures

Hypothesis 8 submits that perceived risk measured by the Chornobyl perceived health risk summary score directly predicts Nottingham health scales. The Nottingham health measures in the female PTSD model include scales for sleep and energy level. We therefore have to review the sleep and energy level panels in Table 8 to find the test results relating the perceived risk summary scale to these measures. When we examine the whysleep panel, we discover a significant direct effect from perceived risk in wave 1986 to female sleep in wave 1 ($crhrw1\ stdized\ \beta=0.197,\ p=0.000$). But we do not find any significant paths from perceived risk to sleep in later waves. Furthermore, when we examine the energy level panel in this table, we find no direct effects from perceived risk in any of the waves. Therefore, we only find partial support for hypothesis 8 insofar as we discover a significant positive direct effect between perceived risk and sleep for women.

10.4.6 Hypothesis 12 Radiation directly explains/predicts substance abuse

Vodka consumption in wave 1 is an exogenous variable, for which reason there is no Vodkaw1 panel in Table 9.Our testing of this hypothesis has to be done, therefore, with vodka consumption in wave 2. If we examine the Vodka2 panel in Table 9 (page 69) for women, we find no evidence in support of hypothesis 12 that radiation direct predicts substance abuse. There is no path coming from cumulative external dose in wave 1 or later to support this hypothesis. Therefore, hypothesis 12 appears to be inconsistent with our data.

10.4.7 Hypothesis 16 Perceived risk of exposure explaining/predicting substance abuse

If we examine the Vodka2 panel in Table 9 (page 69) for women, we find one statistically significant direct path from perceived risk of exposure in wave 1 (crhrw1 stdized $\beta = -0.110$, p = 0.020). The relationship is a statistically significant inverse rather than a direct one. Vodka consumption appears to dulls the awareness of perceived risk. Perhaps the more one drinks the less one is aware of any risk in the midst. The path emanating from perceived Chornobyl health risk in the following decade is not statistically significant (crhrw2 stdized $\beta = 0.067$, p = 0.123). Moreover, there is no supporting a relationship in wave 3. Therefore, hypothesis 6 appears partly supported by the evidence. After 1986 this concern seems to have disappeared. Although there may have been such an inverse relationship in 1986, there appears to be no evidence of it in later years. For a more comprehensive perspective, we have to consider indirect effects as well.

10.4.8 Predominant direct effects on PTSD among women

If we examine the top third, in terms of the absolute value of their effect, on PTSD among women we discover a combination of anxiety, depression, and fear of consuming contaminated food directly affecting female PTSD. In declining magnitude of the absolute value of the direct effect, we find 1) BSI anxiety, 2) self-reported anxiety symptoms in wave 2, 3) sleep measured by the Nottingham health profile, 4) self-reported depressive symptoms in wave 2, 5) fear of consuming contaminated food, 6) self-reported depressive symptoms in 1986, and 7) self-reported anxiety in 1986 are the dominant effects. These are the pure effects, without mediation by other variables, contributing in some way to the type or severity of PTSD experienced by the women.

Table 8: Clustered-robust direct effects for Female PTSD model

Direct effects		(Std	. Err.	adjusted	for 362 clusters in id)
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
Structural					
crhrw1 <-					
PTSDw1	0	(no path)			C
anxagw1	0	(no path)			C
injselfr	.6298492	.0960362	6.56	0.000	.3094638
depagw1	0	(no path)			C
fdferw1	.0026622	.0013112	2.03	0.042	.1067736
cumdose1	0	(no path)			(
cataw1	0	(no path)			C
Vodkaw1	0	(no path)			C
crhrw2 <-					
crhrw1	.5589593	.0406267	13.76	0.000	.60659
crhrw2	0	(no path)			O
depagw2	.0078957	.0014339	5.51	0.000	.1757895
Vodkaw2	0	(no path)			C
fdferw2	.0068324	.0014155	4.83	0.000	.200472
PTSDw1	0	(no path)			C
anxagw1	0	(no path)			C
injselfr	.5176358	.0756644	6.84	0.000	.2760023
cumdose2	.0406358	.0147883	2.75	0.006	.0645207
depagw1	0	(no path)	2	0.000	0
fdferw1	0	(no path)			C
anxagw2	0	(no path)			C
cumdose1	0	(no path)			C
cataw1	4578471	.0892904	-5.13	0.000	1668966
Vodkaw1	0	(no path)	0.10	0.000	0
crhrw3 <-					
crhrw1	0728879	.0279019	-2.61	0.009	0774841
crhrw2	.9729672	.0290181	33.53	0.000	.953103
PTSDw2	0	(no path)			C
depagw2	0	(no path)			C
depagw3	.0020999	.0011739	1.79	0.074	.0493188
Vodkaw2	0	(no path)			C
fdferw2	0	(no path)			C
PTSDw1	0	(no path)			C
anxagw1	0014199	.0005316	-2.67	0.008	0568453
anxagw3	.0021104	.0011668	1.81	0.071	.0549046
injselfr	. 1455887	.0372061	3.91	0.000	.0760427
cumdose2	0	(no path)			(
depagw1	0	(no path)			(
fdferw1	0	(no path)			C
PTSDw3	0	(no path)			C
anxagw2	0	(no path)			C
cumdose1	0	(no path)			C
cataw1	0	(no path)			Ö
Vodkaw1	0	(no path)			Ö

Table 8 Female Direct effects continued:

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
PTSDw2 <-					
crhrw1	1.296714	.3719125	3.49	0.000	.1462848
crhrw2	1.290/14	(no path)	3.43	0.000	.1402040
depagw2	.2355194	.0586064	4.02	0.000	.5450904
Vodkaw2	0	(no path)	1.02	0.000)
fdferw2	0	(no path)			· ·
PTSDw1	.0629863	.0136418	4.62	0.000	.250188
anxagw1	0	(no path)	1.02	0.000	(
injselfr	0	(no path)			(
cumdose2	0	(no path)			(
depagw1	047698	.0191656	-2.49	0.013	1606477
fdferw1	0	(no path)	2.10	0.010	(120021)
anxagw2	0	(no path)			(
cumdose1	0	(no path)			(
cataw1	0	(no path)			(
Vodkaw1	0	(no path)			(
BSIanx <-					
crhrw1	-1.205418	.3627966	-3.32	0.001	3112629
crhrw2	1.02332	.4058448	2.52	0.012	. 2434927
crhrw3	0	(no path)			(
PTSDw2	0	(no path)			(
BSIanx	0	(no path)			(
depagw2	0	(no path)			(
depagw3	0	(no path)			(
whpsleep	0	(no path)			(
Vodkaw2	.3810583	.1851292	2.06	0.040	.0971708
fdferw2	.0156305	.0081065	1.93	0.054	.1091259
BSIdep	.5132076	.0607988	8.44	0.000	.5244021
PTSDw1	.0134713	.0068988	1.95	0.051	.1224799
anxagw1	0	(no path)			(
whpel	0	(no path)			(
anxagw3	.0268248	.0090436	2.97	0.003	.1695174
MiPTSD	1178986	.0428571	-2.75	0.006	3835468
injselfr	0	(no path)			(
cumdose2	0	(no path)			(
depagw1	.0206629	.0090708	2.28	0.023	.1592946
fdferw1	0	(no path)			(
PTSDw3	.0783304	.0284924	2.75	0.006	.1817564
anxagw2	0	(no path)			(
cumdose1	.605108	.3768085	1.61	0.108	.0909477
cataw1	0	(no path)			(
Vodkaw1	0	(no path)			C

Table 8 Female Direct effects continued:

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
depagw2 <-					
crhrw1	-1.812218	.7920199	-2.29	0.022	0883331
crhrw2	0	(no path)			(
depagw2	0	(no path)			(
Vodkaw2	4.093021	1.453323	2.82	0.005	.197020
fdferw2	0	(no path)			(
PTSDw1	0628488	.0398601	-1.58	0.115	1078638
anxagw1	1178432	.0446946	-2.64	0.008	2163268
injselfr	0	(no path)			(
cumdose2	0	(no path)			(
depagw1	.3895504	.0635179	6.13	0.000	.5668862
fdferw1	0	(no path)			(
anxagw2	.4846822	.0706336	6.86	0.000	.563971
cumdose1	0	(no path)			(
cataw1	0	(no path)			(
Vodkaw1	-4.883456	1.39183	-3.51	0.000	257321
depagw3 <-					
crhrw1	-5.755332	1.291249	-4.46	0.000	2605009
crhrw2	6.068978	1.281091	4.74	0.000	.253127
PTSDw2	0	(no path)			(
depagw2	.6111602	.0739866	8.26	0.000	.567519
depagw3	0	(no path)			(
Vodkaw2	0	(no path)			(
fdferw2	0	(no path)			(
PTSDw1	0	(no path)			(
anxagw1	0	(no path)			(
anxagw3	.1358158	.0846626	1.60	0.109	.1504449
injselfr	0	(no path)			(
cumdose2	0	(no path)			(
depagw1	0	(no path)			(
fdferw1	0	(no path)			(
PTSDw3	0	(no path)			(
anxagw2	0	(no path)			(
cumdose1	0	(no path)			(
cataw1	0	(no path)			(
Vodkaw1	0	(no path)			(

Table 8 Female Direct effects continued:

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
whpsl~p <-					
crhrw1	6.484954	1.495313	4.34	0.000	.1973367
crhrw2	0	(no path)			0
crhrw3	0	(no path)			0
PTSDw2	0	(no path)	0.00	0.000	0
BSIanx	4.065195	.4406996	9.22	0.000	.4790629
depagw2	0	(no path)			0
depagw3	0	(no path)			0
whpsleep Vodkaw2	0	(no path)			0
fdferw2	0	(no path)			0
BSIdep	0	(no path) (no path)			0
PTSDw1	0	(no path)			0
	0	(no path)			0
anxagw1	0	(no path)			0
whpel anxagw3	0	(no path)			0
MiPTSD	0	(no path)			0
injselfr	0	(no path)			0
cumdose2	0	(no path)			0
depagw1	0	(no path)			0
fdferw1	0	(no path)			0
PTSDw3	.3567571	.1746543	2.04	0.041	.0975536
anxagw2	0	(no path)			0
cumdose1	0	(no path)			0
cataw1	0	(no path)			0
Vodkaw1	0	(no path)			0
Vodkaw2 <-					
crhrw1	1062609	.0463823	-2.29	0.022	1076017
crhrw2	.0722496	.0459713	1.57	0.116	.0674164
depagw2	0	(no path)			0
Vodkaw2	0	(no path)			0
fdferw2	0	(no path)			0
PTSDw1	0	(no path)			0
anxagw1	0	(no path)			0
injselfr	0	(no path)			0
cumdose2	0	(no path)			0
depagw1	0	(no path)			0
fdferw1	0	(no path)			0
anxagw2	0	(no path)			0
cumdose1	0	(no path)			0
cataw1	0	(no path)			0
Vodkaw1	.8174944	.0762667	10.72	0.000	.8948835

Table 8 Female Direct effects continued:

	06	Robust	_	DS 1-1	C+1 C£
	Coef.	Std. Err.	Z	P> z	Std. Coef.
fdferw2 <-					
crhrw1	0	(no path)			(
crhrw2	-3.804558	1.768892	-2.15	0.031	1296651
depagw2	0	(no path)			(
Vodkaw2	0	(no path)			(
fdferw2	0	(no path)			(
PTSDw1	.0918138	.0429919	2.14	0.033	.1195659
anxagw1	0	(no path)			(
injselfr	0	(no path)			(
cumdose2	0	(no path)			(
depagw1	0	(no path)			(
fdferw1	.3463298	.042736	8.10	0.000	.513740
anxagw2	0	(no path)	0.10	0.000	(010)
cumdose1	0	(no path)			(
cataw1	0	(no path)			
Vodkaw1	0	(no path)			
		, , , , , , , , , , , , , , , , , , ,			
BSIdep <-					
crhrw1	0	(no path)			(
crhrw2	0	(no path)			(
crhrw3	.8274069	.1937903	4.27	0.000	.1966893
PTSDw2	0	(no path)			(
BSIanx	0	(no path)			(
depagw2	0	(no path)			(
depagw3	0	(no path)			(
whpsleep	0	(no path)			(
Vodkaw2	.7577383	.2383173	3.18	0.001	.1891002
fdferw2	0	(no path)			(
BSIdep	0	(no path)			(
PTSDw1	0	(no path)			(
anxagw1	0	(no path)			(
whpel	.0332202	.0054098	6.14	0.000	.3064942
anxagw3	0	(no path)			(
MiPTSD	0	(no path)			(
injselfr	0	(no path)			(
cumdose2	0	(no path)			(
depagw1	0	(no path)			(
fdferw1	0	(no path)			(
PTSDw3	.0530356	.0232056	2.29	0.022	.1204357
anxagw2	0	(no path)	_		(
cumdose1	.7809546	.3433297	2.27	0.023	.114871
cataw1	0	(no path)			(1210.1.
Vodkaw1	0	(P)			`

Table 8 Female Direct effects continued:

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
PTSDw1 <-					
depagw1	.5460726	.0759595	7.19	0.000	.463024
cumdose1	5.452116	2.579781	2.11	0.035	.090129
cataw1	32.62637	5.547596	5.88	0.000	.311254
Vodkaw1	0	(no path)			
anxagw1 <-					
PTSDw1	.3374853	.0701705	4.81	0.000	.315520
depagw1	.5402776	.0815954	6.62	0.000	.428295
cumdose1	0	(no path)			
cataw1	0	(no path)			
Vodkaw1	0	(no path)			
whpel <-					
crhrw1	0	(no path)			
crhrw2	0	(no path)			
crhrw3	0	(no path)			
PTSDw2	0	(no path)			
BSIanx	0	(no path)			
depagw2	0	(no path)			
depagw3	. 1939363	.0737982	2.63	0.009	.117359
whpsleep	.4760098	.0542741	8.77	0.000	.428462
Vodkaw2	0	(no path)			
fdferw2	0	(no path)			
BSIdep	0	(no path)			
PTSDw1	.1552063	.0507843	3.06	0.002	.14968
anxagw1	0	(no path)			
whpel	0	(no path)			
anxagw3	0	(no path)			
MiPTSD	0	(no path)			
injselfr	0	(no path)			
cumdose2	0	(no path)			
depagw1	0	(no path)			
fdferw1	0	(no path)			
PTSDw3	0	(no path)			
anxagw2	0	(no path)			
cumdose1	0	(no path)			
cataw1	0	(no path)			
Vodkaw1	0	(no path)			

Table 8 Female Direct effects continued:

		Robust			
	Coef.	Std. Err.	Z	P> z	Std. Coef.
anxagw3 <-					
crhrw1	0	(no path)			0
crhrw2	0	(no path)			0
PTSDw2	3630256	.1266766	-2.87	0.004	1314904
depagw2	0	(no path)	2.01	0.001	0
depagw3	.4373053	.0801084	5.46	0.000	.3947822
Vodkaw2	0	(no path)	0.10	0.000	0
fdferw2	0	(no path)			0
PTSDw1	0	(no path)			0
anxagw1	0	(no path)			0
anxagwi anxagw3	0	(no path)			0
injselfr	0	(no path)			0
cumdose2	0	(no path)			0
depagw1	0	(no path)			0
fdferw1	0	(no path)			9
PTSDw3	.217492	.1089377	2.00	0.046	.0798591
anxagw2	.6675678	.0607928	10.98	0.000	.6511698
cumdose1	0	(no path)	10.30	0.000	.0311030
cataw1					0
Vodkaw1		(no path) (no path)			0
VOUKAWI	0	(no path)			
MiPTSD <-					
crhrw1	0	(no path)			0
crhrw2	0	(no path)			0
crhrw3	0	(no path)			0
PTSDw2	0	(no path)			0
BSIanx	1.978067	.303483	6.52	0.000	.6080386
depagw2	.1178757	.0450624	2.62	0.009	.1919514
depagw3	0	(no path)			0
whpsleep	.0841461	.0202744	4.15	0.000	.2194891
Vodkaw2	0	(no path)			0
fdferw2	.0845705	.0243929	3.47	0.001	.181495
BSIdep	0	(no path)			0
PTSDw1	0	(no path)			0
anxagw1	.058889	.0209303	2.81	0.005	.1760381
whpel	0	(no path)			0
anxagw3	0	(no path)			0
MiPTSD	0	(no path)			0
injselfr	0	(no path)			0
cumdose2	0	(no path)			0
depagw1	0794127	.0252232	-3.15	0.002	1881867
fdferw1	0	(no path)			0
PTSDw3	.1904562	.0721795	2.64	0.008	.1358453
anxagw2	1435899	.0427587	-3.36	0.001	2720765
cumdose1	0				0
cataw1	-3.761856	1.593841	-2.36	0.018	1002984
Vodkaw1	0				0
anxagw2 cumdose1 cataw1	1435899 0 -3.761856	.0427587 (no path)	-3.36	0.001	272076 100298

Table 8 Female Direct effects continued:

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
injse~r <-	^	(
PTSDw1	0	(no path)	4 20	0.000	1000500
anxagw1	.002516	.000583	4.32	0.000	.1928528
depagw1 fdferw1	.0015706	(no path) .0006401	2.45	0.014	.1282081
cumdose1	.0015706		2.40	0.014	.1202061
cumdosel cataw1	0	(no path)			0
Vodkaw1	0	(no path) (no path)			0
VOUKAWI		(no path)			
cumdo~2 <-					
cumdose1	2.188894	.0836046	26.18	0.000	.8708001
depagw1 <-					
cumdose1	11.71117	4.252571	2.75	0.006	. 2283232
cataw1	12.05375	4.692115	2.57	0.010	.1356172
Vodkaw1	6.995877	2.674015	2.62	0.009	. 2533139
cumdo~3 <-					
cumdose2	1.231235	.0359156	34.28	0.000	.9679575
cumdose1	0	(no path)	34.20	0.000	.9019510
fdferw1 <-					
PTSDw1	0	(no path)			C
anxagw1	.2979369	.0570277	5.22	0.000	.2797673
depagw1	. 237 3309	(no path)	0.22	0.000	.2/3/0/3
cumdose1	0	(no path)			Ö
cataw1	0	(no path)			0
Vodkaw1	0	(no path)			0
PTSDw3 <-					
crhrw1	0	(no path)			0
crhrw2	0	(no path)			0
PTSDw2	0	(no path)			0
depagw2	0	(no path)			0
depagw3	. 1537033	.0439153	3.50	0.000	.377898
Vodkaw2	0	(no path)			0
fdferw2	.0348694	.015939	2.19	0.029	.1049159
PTSDw1	0	(no path)			0
anxagw1	0	(no path)			O
anxagw3	0	(no path)			O
injselfr	0	(no path)			O
cumdose2	0	(no path)			O
depagw1	0	(no path)			0
fdferw1	.0214425	.010021	2.14	0.032	.0957032
PTSDw3	0	(no path)			0
anxagw2	0	(no path)			0
cumdose1	0	(no path)			0
cataw1	0	(no path)			0
Vodkaw1	0	(no path)			0

Table 8 Female Direct effects continued:

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
anxagw2 <-					
PTSDw1	0	(no path)			0
anxagw1	.2843984	.0468098	6.08	0.000	.4486761
depagw1	0	(no path)			0
cumdose1	0	(no path)			0
cataw1	0	(no path)			0
Vodkaw1	2.24764	1.416104	1.59	0.112	.1017831

10.5 Indirect effects for females

10.5.1 Hypothesis 3 addendum: Indirect external dose effects on females

For evidence of indirect effects among female respondents, we turn to MiPTSD panel in Table 10 on page 83. Hypothesis 3 refers to direct effects on PSTD originating with cumulative external dose. Is there auxiliary evidence tending to support Hypothesis 3 via hybrid indirect effects, mediated by other variables? We discover evidence of indirect positive effects of cumulative external dose in 1986 (cumdose1 stdized $\beta=0.161,\ p=0.000$) as well as during the decade thereafter (crhrw2 stdized $\beta=0.013,\ p=0.006$). Significant mediated effects, originate with cumulative external dose and impact female PTSD. Insofar as these signs are positive, they exhibit a direct, as distinguished from an inverse, relationship in waves 1 and 2. This auxiliary evidence is complements the direct effects posited by Hypothesis 3.

10.5.2 Hypothesis 4 addendum: Indirect external dose effects on female BSI

There do appear to be indirect dose effects on female mental health measured by the BSI. If we examine the BSI anxiety panel in Table 9 on about page 80, we find that the indirect effects from cumdose1 and cumdose2 are both statistically significant. cumdose1 sdtized $\beta = .133$, p = .022) and (cumdose2 stdized $\beta = .020$, p = 0.006).

When we turn to the BSI depression panel in the same table on about page 83, we find partial support for hypothesis 4 in that we discover a significant path from cumulative external dose in wave 1 to BSI depression cumdose1 sdtized $\beta = 0.053$, p = .000). But we find no paths from dose in waves 2 or 3. Hence, indirect effects provides partial support for hypothesis 4.

10.5.3 Hypothesis 5 addendum:Indirect perceived risk dose effects on female BSI mental health

When we review the Nottingham panels for sleep and energy level in Table 9, we find significant indirect relationships between cumulative external dose and sleep in waves1 and 2, but not in wave 3. We also find significant indirect paths between computed exposure and energy level in waves 1 and 2. Thus, we do find evidence that partially supports the relationship between dose and female health measured by the Nottingham measures for sleep and energy level.

10.5.4 Hypothesis 6 addendum: Indirect perceived risk effects on female PTSD

Hypothesis 6 relates to direct effects of perceived threat of exposure on female PTSD. There are three statistically significant indirect paths to Chornobyl PTSD from perceived Chornobyl health risk. For 1986, there is a statistically significant indirect path (crhrw1 stdized $\beta=-0.124$, p=0.032). The second significant indirect robust path originates in the decade after 1986. (crhrw2 stdized $\beta=0.178, p=0.002$), and the third significant robust path extends from wave 3 perceived exposure to Chornobyl PTSD, (stdized $\beta=0.043, p=0.008$). Only the first of these three paths has a negative sign. Hypothesis 6 is also complemented by the significant indirect effects originating with perceived risk of exposure that impact female Chornobyl PTSD.

If we take the top eight of these indirect effects and sort them according to their absolute value, we find that 1986 self-reported depressive symptoms has the largest indirect effect upon PTSD. Second largest is that of self-reported anxiety symptoms and third largest is that of BSI depression. Fourth is the feedback through indirect effects of MiPTSD upon itself. Fifth is perceived risk of exposure to radiation in wave 2 and sixth in indirect impact is that of self-reported depressive symptoms in wave 3. Next down the list is the average number of vodka drinks per week and after that the 1986 fear of consuming contaminated food. Depression and anxiety appear to be highly indirectly related to female PTSD.

10.5.5 Hypothesis 20: Do Nottingham health measures mediate a radiation effect on substance abuse?

Hypothesis 20 suggests that radiation predicts substance abuse through mediation of the Nottingham health scales. In the female PTSD model, we have 2 Nottingham health scales—the energy level and sleep scales. If we go to the Nottingham sleep panel in the direct effects Table 9 on page 68, we find no direct paths originating with cumulative dose in either waves 1 or 2. If we turn the the direct effects Table 9 energy level panel on page 71, we find no effects originating with cumulative external dose. Therefore, a one stop mediated journey through these Nottingham scales seems unsupported by the data.

Is it possible that there might be a more circuitous indirect route by which other effects mediate an indirect effect beginning with cumulative external traveling through either energy level or sleep to substance abuse in the form of vodka consumption?

We can backtrack the Vodka effect by turning to the indirect effects Vodkaw2 panel in Table 10 on page 80, where we find no significant indirect effect emanating from external dose of radiation (cumdose1 stdized $\beta=0.004$, p=0.257) in 1986, but we discover a significant indirect effect on vodka consumption stemming from the decade thereafter (cumdose2 stdized $\beta=0.004$ p=0.005). There is no indirect path from cumdose3. Thus, it is possible for an indirect effect to find its way to Vodka consumption in wave 2 if it proceeds through the Nottingham energy level measure to Vodka for there is an indirect effect on Vodka from energy level whpel stdized $\beta=-0.0004$, p=0.000). There is no statistically significant indirect path coming from sleep impacting Vodka consumption in wave 2 according to the Vodkaw2 panel on page 80.

To be sure that this effect was mediated by the the energy level Notting-ham, we turn to the energy level panel on page 82, where we observe significant indirect effects from external dose in 1986 and the decade following it (cumdose1 stdized $\beta=0.090,\ p=0.001$) and (cumdose2 stdized $\beta=0.006,\ p=0.005$). Thus, we have some evidence of an indirect relationship of cumulative external dose impacting a form of substance abuse through the a Nottingham subscale for energy level, and therefore partial confirmation of hypothesis 20. Because the leg of the journey from sleep was not statistically significant at the 0.05 level, we do not have evidence of sleep as a mediator of substance abuse for hypothesis 20. In fact, the effect is so small and indirect that it would probably not provide a sound basis for prediction. Effects must be stable and relatively large to provide a good basis for explanation or prediction.

10.5.6 Hypothesis 24: Do Nottingham health measures mediate a perceived risk impact on substance abuse?

Hypothesis 24 relates to perceived risk of radiation exposure explaining or predicting substance abuse while being mediated by Nottingham health measures. In the Chornobyl female Vodkaw2 panel of indirect effects (Table 10, p. 80), we find a statistically significant robust indirect effect originating with energy level (whpel stdized $\beta = -0.0004$, p = 0.000) but not with sleep (p = 0.553). If we turn to the female whpel panel (Table 10, p.82, we find two statistically significant indirect effect originating with perceived risk of exposure in waves 2 (crhrw2 stdized $\beta = .089$, p = 0.000) and (crhrw3 stdized $\beta = 0.013$, p = 0.008). Therefore we have partial evidence consistent with hypothesis 24, insofar as it relates a relationship of perceived risk of exposure with vodka consumption as a substance abuse, mediated by Nottingham energy level.

Table 9: Clustered-robust indirect effects for female PTSD

Indirect effects

(Std. Err. adjusted for 362 clusters in id)

			5	· ·
Conf	Ct.l Cf			
Coei.	Sta. Err.	Z	P> Z	Std. Coef.
.000902	.0001875	4.81	0.000	.031758
.0026726	.0004014	6.66	0.000	.1006527
0	(no path)			0
.0019365	.0001982	9.77	0.000	.0578138
.0009892	.0004032	2.45	0.014	.0396758
.027596	.011812	2.34	0.019	.0160626
.0527695	.0169586	3.11	0.002	.0177254
.0135474	.006073	2.23	0.026	.014645
0302517	.0065731	-4.60	0.000	0328295
0231125	.0118248	-1.95	0.051	0231125
0001825	.0000331	-5.51	0.000	0040629
.0315704	.0112098	2.82	0.005	.0338337
0001579	.0000327	-4.83	0.000	0046334
.0013986	.0004876	2.87	0.004	.0534421
.0037649	.0006558	5.74	0.000	.1538713
.3210422	.0508405	6.31	0.000	.171179
0009392	.0003418	-2.75	0.006	0014912
.0058025	.0005385	10.78	0.000	.1879968
.0050363	.0009302	5.41	0.000	.2192051
.0037385	.0005448	6.86	0.000	.0968489
.1624714	.0483016	3.36	0.001	.1026268
.1261562	.0347043	3.64	0.000	.0459871
.0371378	.0147454	2.52	0.012	.043568
	.0026726 0 .0019365 .0009892 .027596 .0527695 .0135474 0302517 0231125 0001825 .0315704 0001579 .0013986 .0037649 .3210422 0009392 .0058025 .0058025 .0050363 .0037385 .1624714 .1261562	.000902 .0001875 .0026726 .0004014	Coef. Std. Err. z .000902 .0001875 4.81 .0026726 .0004014 6.66 0 (no path) .0019365 .0001982 9.77 .0009892 .0004032 2.45 .027596 .011812 2.34 .0527695 .0169586 3.11 .0135474 .006073 2.23 0302517 .0065731 -4.600231125 .0118248 -1.950001825 .0000331 -5.51 .0315704 .0112098 2.820001579 .0000327 -4.83 .0013986 .0004876 2.87 .0037649 .0006558 5.74 .3210422 .0508405 6.310009392 .0003418 -2.75 .0058025 .0005385 10.78 .0050363 .0009302 5.41 .0037385 .0005448 6.86 .1624714 .0483016 3.36	Coef. Std. Err. z P> z .000902 .0001875

Continued....

Table 9 female indirect effects continued:

	Coef.	Std. Err.	z	P> z	Std. Coef
crhrw3 <-					
crhrw1	.5009907	.0391991	12.78	0.000	.532581
crhrw2	0024477	.0124567	-0.20	0.844	002397
PTSDw2	0009291	.0003242	-2.87	0.004	008754
depagw2	.0094638	.0013451	7.04	0.000	.206398
depagw3	.0012047	.0002065	5.83	0.000	.028294
Vodkaw2	.0387354	.0137539	2.82	0.005	.040664
fdferw2	.0066504	.0013711	4.85	0.000	.191147
PTSDw1	.0009774	.0005131	1.90	0.057	.036584
anxagw1	.0044425	.0007543	5.89	0.000	.17786
anxagw3	.0004488	.0002798	1.60	0.109	.011676
injselfr	.7720159	.0834308	9.25	0.000	.403233
cumdose2	.0394378	.0143524	2.75	0.006	.061340
depagw1	.0058977	.0006272	9.40	0.000	.18718
fdferw1	.0048961	.0008688	5.64	0.000	. 208748
PTSDw3	.0005566	.0002788	2.00	0.046	.00531
anxagw2	.0062954	.0006521	9.65	0.000	.159758
cumdose1	.1607237	.0478905	3.36	0.001	.099450
cataw1	3413706	.0923655	-3.70	0.000	12189
Vodkaw1	.0408597	.0167611	2.44	0.015	.04695
PTSDw2 <-					
crhrw1	4924234	.1952116	-2.52	0.012	05555
crhrw2	.0680378	.0443843	1.53	0.125	.007072
depagw2	.0005372	.0000976	5.51	0.000	.001243
Vodkaw2	.9661846	.3430665	2.82	0.005	.10763
fdferw2	.0004649	.0000963	4.83	0.000	.00141
PTSDw1	0124228	.0094234	-1.32	0.187	04934
anxagw1	.0070237	.0109472	0.64	0.521	.02984
injselfr	.5418007	.0773084	7.01	0.000	.030030
cumdose2	.0027648	.0010062	2.75	0.006	.00045
depagw1	.123362	.0148227	8.32	0.000	.41548
fdferw1	.0031532	.0011073	2.85	0.004	.014266
anxagw2	.1144124	.0166735	6.86	0.000	.308116
cumdose1	1.167844	.4931618	2.37	0.018	.076684
cataw1	2.530587	.6890659	3.67	0.000	.095893
Vodkaw1	.4235723	.2943036	1.44	0.150	.05165

Table 9 female indirect effects continued:

	Coef.	Std. Err.	z	P> z	Std. Coef
BSIanx <-					
crhrw1	.672421	.0947237	7.10	0.000	.173632
crhrw2	.2787875	.0956466	2.91	0.004	.066335
crhrw3	.3422929	.0801698	4.27	0.000	.08314
PTSDw2	0093824	.003274	-2.87	0.004	021475
BSIanx	193906	.028965	-6.69	0.000	19390
depagw2	.0126157	.0045789	2.76	0.006	.066832
depagw3	.0257657	.0039821	6.47	0.000	.146991
whpsleep	0014552	.002041	-0.71	0.476	012348
Vodkaw2	.2912182	.1013489	2.87	0.004	.074261
fdferw2	.0003418	.00333	0.10	0.918	.002386
BSIdep	099514	.0117893	-8.44	0.000	101684
PTSDw1	.0015614	.0016808	0.93	0.353	.01419
anxagw1	.0058015	.0025012	2.32	0.020	.056418
whpel	.013743	.002238	6.14	0.000	.129560
anxagw3	0009797	.0026796	-0.37	0.715	006191
MiPTSD	.0228612	.0083103	2.75	0.006	.07437
injselfr	.3881437	.113922	3.41	0.001	.049244
cumdose2	.0529122	.019256	2.75	0.006	.019990
depagw1	.0202458	.0031727	6.38	0.000	.156079
fdferw1	.006268	.0012536	5.00	0.000	.064914
PTSDw3	0062468	.0122372	-0.51	0.610	014494
anxagw2	.0370143	.0042302	8.75	0.000	.228163
cumdose1	.8826107	.3850208	2.29	0.022	.132656
cataw1	.7449169	.3337204	2.23	0.026	.064611
Vodkaw1	.8573618	.1295913	6.62	0.000	. 23932
depagw2 <-					
crhrw1	2785792	.1905468	-1.46	0.144	013578
crhrw2	. 2888842	.1884527	1.53	0.125	.012975
depagw2	.0022809	.0004142	5.51	0.000	.002280
Vodkaw2	.009336	.0033149	2.82	0.005	.000449
fdferw2	.0019738	.0004089	4.83	0.000	.002601
PTSDw1	.0051364	.0010636	4.83	0.000	.008815
anxagw1	. 1329505	.02273	5.85	0.000	.244059
injselfr	-1.16735	.2024174	-5.77	0.000	027956
cumdose2	.011739	.0042721	2.75	0.006	.000837
depagw1	0224645	.0050623	-4.44	0.000	032691
fdferw1	006716	.0028301	-2.37	0.018	013129
anxagw2	.0011055	.0001611	6.86	0.000	.001286
cumdose1	4.010047	1.567486	2.56	0.011	.113770
cataw1	2.409548	1.995185	1.21	0.227	.039451
Vodkaw1	7.002478	1.603457	4.37	0.000	.368978

Table 9 female indirect effects continued:

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
depagw3 <-					
crhrw1	1.625118	.6140389	2.65	0.008	.07355
crhrw2	.4456005	.1733677	2.57	0.010	.018585
PTSDw2	0526721	.0183798	-2.87	0.004	021133
depagw2	.080774	.0104466	7.73	0.000	.075006
depagw3	.0682998	.0117087	5.83	0.000	.068299
Vodkaw2	2.832101	1.005604	2.82	0.005	.12659
fdferw2	.0456105	.0090815	5.02	0.000	.05581
PTSDw1	0273235	.0279563	-0.98	0.328	04354
anxagw1	.0453168	.0337597	1.34	0.179	.07724
anxagw3	.0092762	.0057824	1.60	0.109	.01027
injselfr	.7707672	.6389143	1.21	0.228	.01714
cumdose2	.2647252	.0963397	2.75	0.006	.01753
depagw1	.2816186	.044662	6.31	0.000	.38055
fdferw1	.006688	.0057322	1.17	0.243	.01214
PTSDw3	.0315564	.015806	2.00	0.046	.0128
anxagw2	.4322269	.0477133	9.06	0.000	.46702
cumdose1	3.728569	1.303943	2.86	0.004	.09823
cataw1	4795867	1.715818	-0.28	0.780	00729
Vodkaw1	1.877856	.9541261	1.97	0.049	.09188
whpsl~p <-					
crhrw1	-2.418238	1.256828	-1.92	0.054	07358
crhrw2	5.604311	1.366122	4.10	0.000	.15714
crhrw3	1.391487	.3259059	4.27	0.000	.03983
PTSDw2	0410296	.0143171	-2.87	0.004	01106
BSIanx	7882658	.1177482	-6.69	0.000	09289
depagw2	.0888622	.0193943	4.58	0.000	.0554
depagw3	.1633225	.0303032	5.39	0.000	.10980
whpsleep	0059158	.0082971	-0.71	0.476	00591
Vodkaw2	2.886739	.8380951	3.44	0.001	.08674
fdferw2	.0795556	.0320349	2.48	0.013	.06545
BSIdep	1.681745	.1992335	8.44	0.000	.20250
PTSDw1	.0677401	.0244589	2.77	0.006	.07257
anxagw1	.0467854	.0116488	4.02	0.000	.05361
whpel	.0558678	.0090979	6.14	0.000	.06206
anxagw3	.1130213	.0339356	3.33	0.001	.08416
MiPTSD	3863453	.1404398	-2.75	0.006	14811
injselfr	5.664994	.5765389	9.83	0.000	.08469
cumdose2	. 2277357	.0828784	2.75	0.006	.01013
depagw1	.1972332	.0313828	6.28	0.000	.17918
fdferw1	.0612467	.0099034	6.18	0.000	.07474
PTSDw3	.2947643	.1223861	2.41	0.016	.08060
anxagw2	.1739946	.0178123	9.77	0.000	.12639
cumdose1	6.47391	1.559004	4.15	0.000	.11466
cataw1	3.474968	1.523748	2.28	0.023	.03551
Vodkaw1	3.696834	.6722811	5.50	0.000	.121609

Table 9 female indirect effects continued:

	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
Vodkaw2 <-					
crhrw1	.0381989	.0028467	13.42	0.000	.0386809
crhrw2	0016699	.0008543	-1.95	0.051	0015582
depagw2	.0005573	.0001012	5.51	0.000	.0115772
Vodkaw2	.0022809	.0008099	2.82	0.005	.0022809
fdferw2	.0004822	.0000999	4.83	0.000	.0132027
PTSDw1	5.21e-06	.0000302	0.17	0.863	.0001857
anxagw1	000012	.0000259	-0.46	0.644	0004569
injselfr	0063342	.0085239	-0.74	0.457	0031515
cumdose2	.0028681	.0010438	2.75	0.006	.0042492
depagw1	.0002135	.0000354	6.03	0.000	.0064532
fdferw1	0000241	.0000908	-0.27	0.790	0009802
anxagw2	.0002701	.0000394	6.86	0.000	.0065292
cumdose1	.0088061	.0067769	1.30	0.194	.0051904
cataw1	0295719	.0179777	-1.64	0.100	0100586
Vodkaw1	.0012436	.001332	0.93	0.350	.0013614
fdferw2 <-					
crhrw1	-2.011499	.1499055	-13.42	0.000	0743967
crhrw2	.0879328	.0449881	1.95	0.051	.0029969
depagw2	0293454	.0053294	-5.51	0.000	0222669
Vodkaw2	1201112	.0426483	-2.82	0.005	004387
fdferw2	0253934	.005261	-4.83	0.000	0253934
PTSDw1	.0295021	.0064811	4.55	0.000	.0384195
anxagw1	.0888608	.0190468	4.67	0.000	.1237761
injselfr	-3.190799	.3379383	-9.44	0.000	0579838
cumdose2	1510281	.0549627	-2.75	0.006	0081727
depagw1	.1028252	.0094489	10.88	0.000	.113541
fdferw1	0191611	.0035391	-5.41	0.000	0284232
anxagw2	0142232	.0020728	-6.86	0.000	0125579
cumdose1	1.535048	.8531069	1.80	0.072	.0330464
cataw1	6.899171	1.797879	3.84	0.000	.0857122
Vodkaw1	.7325007	.362736	2.02	0.043	.0292872

Table 9 female indirect effects continued:

		Robust					
	Coef.	Std. Err.	z	P> z	Std. Coef.		
BSIdep <-							
crhrw1	.3029518	.0735126	4.12	0.000	.0765582		
crhrw2	1.03332	.0613197	16.85	0.000	.2406235		
crhrw3	0	(no path)			(
PTSDw2	0021862	.0007629	-2.87	0.004	0048973		
BSIanx	.0518185	.0068401	7.58	0.000	.0507123		
depagw2	.0197019	.0017368	11.34	0.000	.1021441		
depagw3	.020908	.0038337	5.45	0.000	.1167326		
whpsleep	.0157196	.0018506	8.49	0.000	.1305444		
Vodkaw2	.1205371	.0340111	3.54	0.000	.0300811		
fdferw2	.009594	.0015868	6.05	0.000	.0655518		
BSIdep	.0265936	.0031505	8.44	0.000	.0265936		
PTSDw1	.0069797	.002118	3.30	0.001	.0621045		
anxagw1	.0043962	.0012195	3.60	0.000	.0418402		
whpel	0	(no path)			(
anxagw3	.0060222	.0021411	2.81	0.005	.0372448		
MiPTSD	0061093	.0022208	-2.75	0.006	0194505		
injselfr	.8493619	.0914531	9.29	0.000	.1054592		
cumdose2	.0419898	.0152811	2.75	0.006	.0155252		
depagw1	.0155217	.0013673	11.35	0.000	.1171052		
fdferw1	.0068411	.0010375	6.59	0.000	.069337		
PTSDw3	.0112237	.0035096	3.20	0.001	.0254872		
anxagw2	.0144466	.0013746	10.51	0.000	.0871511		
cumdose1	.3638668	.1044216	3.48	0.000	.0535217		
cataw1	035302	.1605098	-0.22	0.826	0029966		
Vodkaw1	.7628306	.2088894	3.65	0.000	.2083927		
PTSDw1 <-							
depagw1	0	(no path)			(
cumdose1	6.39515	2.454826	2.61	0.009	.1057193		
cataw1	6.582221	2.724412	2.42	0.016	.0627941		
Vodkaw1	3.820257	1.518111	2.52	0.012	.1172906		
anxagw1 <-							
PTSDw1	0	(no path)			(
depagw1	.1842915	.0256352	7.19	0.000	.1460937		
cumdose1	10.32556	3.781678	2.73	0.006	.159584:		
cataw1	19.74469	4.11913	4.79	0.000	.176104:		
Vodkaw1	5.068996	1.963597	2.58	0.010	.1455007		

Table 9 female indirect effects continued:

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
whpel <-					
crhrw1	1.134798	1.010926	1.12	0.262	.031082
crhrw2	3.931119	.7654516	5.14	0.000	.099219
crhrw3	.6623615	.1551344	4.27	0.000	.017066
PTSDw2	0297455	.0103796	-2.87	0.004	007222
BSIanx	1.55985	.2059034	7.58	0.000	.165459
depagw2	.1764904	.0196296	8.99	0.000	.099175
depagw3	.0909889	.0155513	5.85	0.000	.05506
whpsleep	002816	.0039495	-0.71	0.476	002534
Vodkaw2	1.923363	.5076293	3.79	0.000	.05202
fdferw2	.0467147	.0154536	3.02	0.003	.034595
BSIdep	.800527	.0948371	8.44	0.000	.086767
PTSDw1	.0269459	.0141772	1.90	0.057	.02598
anxagw1	.0310589	.0107444	2.89	0.004	.03203
whpel	.0265936	.0043307	6.14	0.000	.026593
anxagw3	.0819378	.0289823	2.83	0.005	.05492
MiPTSD	1839041	.0668507	-2.75	0.006	06346
injselfr	2.846072	.318	8.95	0.000	.03830
cumdose2	.1597442	.0581347	2.75	0.006	.00640
depagw1	.2332549	.0219636	10.62	0.000	.19074
fdferw1	.0304511	.0045085	6.75	0.000	.03345
PTSDw3	.3162505	.1045971	3.02	0.002	.07783
anxagw2	.1666476	.0143352	11.63	0.000	.10896
cumdose1	5.643519	1.63977	3.44	0.001	.08997
cataw1	7.646529	2.51026	3.05	0.002	.07035
Vodkaw1	2.716841	.5630276	4.83	0.000	.08044
anxagw3 <-					
crhrw1	-2.251468	.7190227	-3.13	0.002	09199
crhrw2	3.013751	.647007	4.66	0.000	.1134
PTSDw2	0247946	.008652	-2.87	0.004	00898
depagw2	.2398002	.0430143	5.57	0.000	.20102
depagw3	.0655803	.0115893	5.66	0.000	.05920
Vodkaw2	.9815072	.3485072	2.82	0.005	.03960
fdferw2	.0286929	.0047246	6.07	0.000	.03169
PTSDw1	.0342444	.0196175	1.75	0.081	.04926
anxagw1	.210701	.0383643	5.49	0.000	.32424
anxagw3	.0682998	.0425756	1.60	0.109	.06829
injselfr	.1419408	.3174049	0.45	0.655	.002849
cumdose2	.1224662	.0445683	2.75	0.006	.00732
depagw1	. 2444495	.0247997	9.86	0.000	.298208
fdferw1	.0091483	.0039828	2.30	0.022	.01499
PTSDw3	.0148547	.0074404	2.00	0.046	.00545
anxagw2	.1618216	.0165274	9.79	0.000	.15784
cumdose1	3.317559	1.222558	2.71	0.007	.07890
cataw1	2.683964	1.594554	1.68	0.092	.036838
Vodkaw1	3.20563	1.408735	2.28	0.023	.141599

Table 9 female indirect effects continued:

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
MiPTSD <-					
crhrw1	-1.262938	.7378226	-1.71	0.087	100244
crhrw2	2.932996	.8016982	3.66	0.000	.214524
crhrw3	.7941665	.1860049	4.27	0.000	.059297
PTSDw2	0235534	.0082189	-2.87	0.004	016572
BSIanx	1078184	.0698871	-1.54	0.123	033142
depagw2	.0502798	.0110059	4.57	0.000	.081876
depagw3	.0959824	.0180021	5.33	0.000	.168318
whpsleep	0033763	.0047354	-0.71	0.476	008806
Vodkaw2	2.128235	.566931	3.75	0.000	.166822
fdferw2	.0441813	.0183971	2.40	0.016	.094816
BSIdep	.9598258	.113709	8.44	0.000	.301476
PTSDw1	.0454014	.0171182	2.65	0.008	.126886
anxagw1	0129949	.0091147	-1.43	0.154	03884
whpel	.0318856	.0051925	6.14	0.000	.092400
anxagw3	.0648809	.0194815	3.33	0.001	.126033
MiPTSD	2204997	.0801535	-2.75	0.006	220499
injselfr	.8383846	.2596494	3.23	0.001	.032696
cumdose2	.1191847	.0433741	2.75	0.006	.013841
depagw1	.1723718	.0207477	8.31	0.000	.408474
fdferw1	.0508818	.0070227	7.25	0.000	.161980
PTSDw3	.198333	.0722898	2.74	0.006	.141463
anxagw2	.156476	.0146898	10.65	0.000	.296493
cumdose1	3.478359	.8622135	4.03	0.000	.160702
cataw1	2.088412	.9528446	2.19	0.028	.055681
Vodkaw1	1.597934	.4027451	3.97	0.000	.137111
injse~r <-					
PTSDw1	.001007	.0002094	4.81	0.000	.072166
anxagw1	.0004679	.0000896	5.22	0.000	.035868
depagw1	.0021621	.0002213	9.77	0.000	.131374
fdferw1	0	(no path)			
cumdose1	.0308106	.0127839	2.41	0.016	.036500
cataw1	.0589165	.0170264	3.46	0.001	.040278
Vodkaw1	.0151255	.0066733	2.27	0.023	.033279

Table 9 female indirect effects continued:

	Coef.	Robust Std. Err.	z	P> z	Std. Coef
cumdo~2 <-					
cumdose1	0	(no path)			
depagw1 <-					
cumdose1	0	(no path)			
cataw1	0	(no path)			
Vodkaw1	0	(no path)			
cumdo~3 <-					
cumdose2	0	(no path)			
cumdose1	2.695043	.1392837	19.35	0.000	.842897
fdferw1 <-					
PTSDw1	.1005493	.0209064	4.81	0.000	.088272
anxagw1	0	(no path)			
depagw1	.2158758	.0220961	9.77	0.000	.16069
cumdose1	3.076366	1.253654	2.45	0.014	.044646
cataw1	5.882672	1.780709	3.30	0.001	.049268
Vodkaw1	1.510241	.6474416	2.33	0.020	.04070
PTSDw3 <-					
crhrw1	7049673	.2358145	-2.99	0.003	07845
crhrw2	.8717156	.2216259	3.93	0.000	.08939
PTSDw2	0080959	.002825	-2.87	0.004	00798
depagw2	.1053293	.0117754	8.94	0.000	. 24047
depagw3	.0104979	.0017997	5.83	0.000	.025810
Vodkaw2	.4311151	.1530775	2.82	0.005	.047378
fdferw2	.006125	.0012127	5.05	0.000	.018429
PTSDw1	.0021865	.0046807	0.47	0.640	.00856
anxagw1	.0164524	.0054493	3.02	0.003	.06895
anxagw3	.0223011	.0139017	1.60	0.109	.06073
injselfr	.0072081	.0954708	0.08	0.940	.000394
cumdose2	.0354229	.0128912	2.75	0.006	.00576
depagw1	.0515001	.0067778	7.60 6.38	0.000	.1711
fdferw1 PTSDw3	.0124361	.0019498 .0024294	2.00	0.000 0.046	.05550
	.0659387	.0024294	9.08	0.046	.17516
anxagw2 cumdose1	.6925846	.3060572	2.26	0.000	.04486
cataw1	.2929954	.3141094	0.93	0.024	.01095
Vodkaw1	.3465579	.1984351	1.75	0.081	.0416
anxagw2 <-					
PTSDw1	.0959803	.0199564	4.81	0.000	.14156
anxagw1	.0959603	(no path)	4.01	0.000	.14150
depagw1	.2060663	.0210921	9.77	0.000	.25771
cumdose1	2.936574	1.195044	2.46	0.000	.07160
cataw1	5.615359	1.519635	3.70	0.000	.07901
Vodkaw1	1.441614	.5979863	2.41	0.016	.06528

10.6 Total effects on Chornobyl PTSD among females

10.6.1 Hypothesis 3: The total effect of exposure on females

In attempting to obtain a more complete picture of pure as well as hybrid mediated relationships, we turn to Table 11, which lists the total effects of the variables upon the other variables. To obtain a sense of the relative impact of these effects, we sort the total effects on PTSD among women by the absolute values of their impact. Three of the 25 effects are not statistically significant at the 0.05 level so we ignore those. There are 22 effects remaining. If we split the rankings into groups of 7, 7, and 8, we can classify the groups according to relatively high, medium, and low impact. Among the top seven, in order of their decreasing size, were 1) BSI anxiety 2) BSI depression 3) self-reported PTSD symptoms in wave 3 4) self-expressed depressive symptoms in wave 2 5) fear of consuming contaminated food in wave 2 6) Nottingham measured sleep and 7) self-expressed depressive symptoms in 1986.

The effects with middling impacts included 8) indirect effects feedback from MiPTSD upon itself, 9) perceived risk of exposure to Chornobyl radiation in wave 2 10) self-reported depressive symptoms in wave 3 11) vodka consumption in wave 2 12) fear of consuming contaminated food in 1986, 13) reconstructed exposure to radiation in wave 1 and 14) self-reported anxiety symptoms in waves 1. The remainder have much less impact. The high and middling groups are different forms of depression, anxiety, fear of consuming contaminated food, along with some PTSD symptoms. Amidst the lower levels of impact are those of injury, energy level, catastrophic experiences, and 1986 cumulative external dose. Nonetheless, clinically diagnosable (BSI) anxiety and depression are among the top four impacts on PTSD.

We can assess the hypothesis 3 with respect to total effects to obtain a more comprehensive perspective of whether radiation explains or predicts Chornobyl PTSD. In the Chornobyl PTSD panel of Table 11 on page 96, we notice a total effect of cumulative external dose in 1986 on Chornobyl PTSD (cumdose1 stdized $\beta=0.155,\ p=0.000$) and in the decade after (cumdose2 stdized $\beta=0.012,\ p=0.005$), but we find no such effect in originating in wave 3. In terms of total effects, relating to hypothesis 3, we find total effects of external dose for both 1986 and the following decade, so hypothesis 3 is consistent with our model and data in waves 1 and 2, but we cannot say the same for wave 3. The effects are positive and therefore the relationship is direct even if it is a combination of direct and indirect effects among females. Therefore, we have partial support for hypothesis 3 in our model and data.

10.6.2 Hypothesis 4: Total effect of exposure on BSI mental health

Cumulative radiation external dose exhibits significant total effects on BSI anxiety in 1986 and in the decade, as we can see on the BSI anx panel on page 93 (cumdose1 stdized $\beta = 0.224$, p = 0.000) and in the decade after (cumdose2 stdized $\beta = 0.020$, p = 0.006).

Cumulative radiation does exhibits significant total effects for waves 1 and 2 on BSI depression as well (page 96) (cumdose1 stdized $\beta = 0.168$, p = 0.004) and in the decade after (cumdose2 stdized $\beta = 0.016$, p = 0.006).

Hypothesis 5: Perceived risk of exposure on Nottingham health measures Perceived risk exhibits significant total effects on energy level in waves 2 and 3. If we turn to the energy level total effect panel on page 97, we observe no significant path in 1986 (p = .262), but in waves 2 and 3 the crhrw2 $\beta = 0.099$) and crhrw3 $\beta = 0.017$) are both statistically significant at the 0.000 level.

10.6.3 Hypothesis 6: The total effect of perceived risk explaining/predicting PTSD

We also find partial support in our data for hypothesis 6. On page 96, in the MiPTSD panel of Table 11, we find statistically significant total effects of perceived Chornobyl health risk with Chornobyl PTSD in all three waves. From wave 1 the parameter estimate of this relationship is shown to be (crhrw1 stdized $\beta = -0.124$, p = 0.032). However, this relationship is a negative one, implying an inverse relationship, which at first glance might appear counterintuitive until we recall that because there was no direct effect the total effect consists only of the hybrid mediated product of relationships one of which could easily reverse the sign. The other perceived risk of exposure relationships are positive and consistent with the hypothesis. From wave 2, it is (stdized $\beta = 0.178, p = 0.002$) and from wave 3 is appears to be (stdized $\beta = 0.043, p = 0.008$). Therefore, female total effects appear to be partly consistent with hypothesis 6, insofar as they are statistically significant.

10.6.4 Hypothesis 12: The total effect of exposure on substance abuse

Are the total effects consistent with hypotheses 12 and 16, which respectfully submit that radiation and perceived risk of exposure predict (explain) substance abuse. We examine the Vodka2 panel in Table 11, on page 95. Because 1986 vodka consumption is an exogenous variable in this model, we have no pre-existing data to show that either pre-wave radiation or perceived risk of exposure leads to such consumption. Nor do we have any concurrent paths in our model to support either hypothesis 12 or hypothesis 16 in wave one. As for wave 2, we do have a total effect of cumdose2 on vodka consumption that is significant and positive (cumdose2 stdized $\beta = 0.004$, p = 0.005). This is partial support for hypothesis 12 insofar as it pertains only to female drinking during the decade after 1986.

10.6.5 Hypothesis 16: The total effect of perceived risk of exposure and substance abuse

If we again review the Vodka2 panel on page 95, we observe no evidence of significant wave 1 or wave 2 perceived risk of exposure from total effects on

vodka consumption. The only impact that appears to be statistically significant stems from wave 3 perceived risk of exposure. We cannot have a future perceived risk (wave 3) significantly impact a wave 2 vodka consumption unless we are talking about a rational expectation, measured in wave 2 about what one might believe in wave 3. However, the wave 3 recollection pertained to wave 3 and not earlier. For this reason, what appears to be significant is rendered unacceptable by the arrow of time inherent in the model. So we disregard the impact of crhrw3 on vodkaw2. We therefore have no empirical evidence to support hypothesis 16 based on the significance of total effects.

Table 10: Clustered-robust total effects for Female PTSD model

Total effects

(Std. Err. adjusted for 362 clusters in id)

		(Sto	d. Err.	adjusted :	for 362 clusters in id)
	Coef.	Robust Std. Err.	z	P> z	Std. Coef.
Structural					
crhrw1 <-					
PTSDw1	.000902	.0001875	4.81	0.000	.031758
anxagw1	.0026726	.0004014	6.66	0.000	.1006527
injselfr	.6298492	.0960362	6.56	0.000	.3094638
depagw1	.0019365	.0001982	9.77	0.000	.0578138
fdferw1	.0036515	.0013671	2.67	0.008	.1464494
cumdose1	.027596	.011812	2.34	0.019	.0160626
cataw1	.0527695	.0169586	3.11	0.002	.0177254
Vodkaw1	.0135474	.006073	2.23	0.026	.014645
crhrw2 <-					
crhrw1	.5287076	.0394016	13.42	0.000	.5737605
crhrw2	0231125	.0118248	-1.95	0.051	0231125
depagw2	.0077132	.0014008	5.51	0.000	.1717266
Vodkaw2	.0315704	.0112098	2.82	0.005	.0338337
fdferw2	.0066745	.0013828	4.83	0.000	.1958386
PTSDw1	.0013986	.0004876	2.87	0.004	.0534421
anxagw1	.0037649	.0006558	5.74	0.000	.1538713
injselfr	.8386781	.0888246	9.44	0.000	.4471814
cumdose2	.0396966	.0144465	2.75	0.006	.0630295
depagw1	.0058025	.0005385	10.78	0.000	.1879968
fdferw1	.0050363	.0009302	5.41	0.000	.2192051
anxagw2	.0037385	.0005448	6.86	0.000	.0968489
cumdose1	.1624714	.0483016	3.36	0.001	.1026268
cataw1	3316909	.0924141	-3.59	0.000	1209096
Vodkaw1	.0371378	.0147454	2.52	0.012	.043568

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		(50	u. EII.	adjusted for 3	62 Clusters in id,
	Coef.	Std. Err.	z	P> z	Std. Coef
crhrw3 <-					
crhrw1	.4281028	.0430277	9.95	0.000	.455097
crhrw2	.9705195	.0328868	29.51	0.000	.950705
PTSDw2	0009291	.0003242	-2.87	0.004	008754
depagw2	.0094638	.0013451	7.04	0.000	.206398
depagw3	.0033046	.0011578	2.85	0.004	.077613
Vodkaw2	.0387354	.0137539	2.82	0.005	.040664
fdferw2	.0066504	.0013711	4.85	0.000	.191147
PTSDw1	.0009774	.0005131	1.90	0.057	.036584
anxagw1	.0030227	.0008805	3.43	0.001	.121015
anxagw3	.0025592	.0011993	2.13	0.033	.066581
injselfr	.9176046	.0942345	9.74	0.000	.479275
cumdose2	.0394378	.0143524	2.75	0.006	.061340
depagw1	.0058977	.0006272	9.40	0.000	.18718
fdferw1	.0048961	.0008688	5.64	0.000	.208748
PTSDw3	.0005566	.0002788	2.00	0.046	.005317
anxagw2	.0062954	.0006521	9.65	0.000	.159758
cumdose1	.1607237	.0478905	3.36	0.001	.099450
cataw1	3413706	.0923655	-3.70	0.000	121897
Vodkaw1	.0408597	.0167611	2.44	0.015	.046955
PTSDw2 <-					
crhrw1	.8042907	.41537	1.94	0.053	.090733
crhrw2	.0680378	.0443843	1.53	0.125	.007072
depagw2	.2360566	.0585702	4.03	0.000	.546333
Vodkaw2	.9661846	.3430665	2.82	0.005	.107638
fdferw2	.0004649	.0000963	4.83	0.000	.001417
PTSDw1	.0505635	.0150281	3.36	0.001	.200843
anxagw1	.0070237	.0109472	0.64	0.521	.029840
injselfr	.5418007	.0773084	7.01	0.000	.030030
cumdose2	.0027648	.0010062	2.75	0.006	.000456
depagw1	.075664	.0216747	3.49	0.000	.254837
fdferw1	.0031532	.0011073	2.85	0.004	.014266
anxagw2	.1144124	.0166735	6.86	0.000	.308116
cumdose1	1.167844	.4931618	2.37	0.018	.076684
cataw1	2.530587	.6890659	3.67	0.000	.095893
Vodkaw1	.4235723	.2943036	1.44	0.150	.051655

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		(St	a. Err.	adjusted 10.	r 362 clusters in io
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
BSIanx <-					
crhrw1	5329969	.3038241	-1.75	0.079	137630
crhrw2	1.302107	.3314437	3.93	0.000	.309828
crhrw3	.3422929	.0801698	4.27	0.000	.08314
PTSDw2	0093824	.003274	-2.87	0.004	02147
BSIanx	193906	.028965	-6.69	0.000	1939
depagw2	.0126157	.0045789	2.76	0.006	.06683
depagw3	.0257657	.0039821	6.47	0.000	.14699
whpsleep	0014552	.002041	-0.71	0.476	01234
Vodkaw2	.6722765	.2013213	3.34	0.001	.17143
fdferw2	.0159723	.0073579	2.17	0.030	.11151
BSIdep	.4136935	.0490096	8.44	0.000	.42271
PTSDw1	.0150327	.0058703	2.56	0.010	.13667
anxagw1	.0058015	.0025012	2.32	0.020	.05641
whpel	.013743	.002238	6.14	0.000	.12956
anxagw3	.0258451	.0078372	3.30	0.001	.16332
MiPTSD	0950373	.0345469	-2.75	0.006	30917
injselfr	.3881437	.113922	3.41	0.001	.04924
cumdose2	.0529122	.019256	2.75	0.006	.01999
depagw1	.0409088	.0076771	5.33	0.000	.31537
fdferw1	.006268	.0012536	5.00	0.000	.06491
PTSDw3	.0720836	.0300856	2.40	0.017	.16726
anxagw2	.0370143	.0042302	8.75	0.000	.22816
cumdose1	1.487719	.3329151	4.47	0.000	. 2236
cataw1	.7449169	.3337204	2.23	0.026	.06461
Vodkaw1	.8573618	.1295913	6.62	0.000	. 2393
depagw2 <-					
crhrw1	-2.090798	.8288556	-2.52	0.012	10191
crhrw2	.2888842	.1884527	1.53	0.125	.01297
depagw2	.0022809	.0004142	5.51	0.000	.00228
Vodkaw2	4.102357	1.456638	2.82	0.005	.19746
fdferw2	.0019738	.0004089	4.83	0.000	.00260
PTSDw1	0577125	.0399674	-1.44	0.149	09904
anxagw1	.0151073	.0463923	0.33	0.745	.02773
injselfr	-1.16735	.2024174	-5.77	0.000	02795
cumdose2	.011739	.0042721	2.75	0.006	.00083
depagw1	.3670859	.064481	5.69	0.000	.53419
fdferw1	006716	.0028301	-2.37	0.018	01312
anxagw2	.4857877	.0707947	6.86	0.000	.5652
cumdose1	4.010047	1.567486	2.56	0.011	.11377
cataw1	2.409548	1.995185	1.21	0.227	.03945
Vodkaw1	2.119022	1.232647	1.72	0.086	.111656

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		(St	a. Err.	adjusted 1	for 362 clusters in id)
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
				- ,-,	
depagw3 <-					
crhrw1	-4.130214	1.537791	-2.69	0.007	186944
crhrw2	6.514578	1.376565	4.73	0.000	.2717128
PTSDw2	0526721	.0183798	-2.87	0.004	0211332
depagw2	.6919342	.0763153	9.07	0.000	.6425259
depagw3	.0682998	.0117087	5.83	0.000	.0682998
Vodkaw2	2.832101	1.005604	2.82	0.005	.1265908
fdferw2	.0456105	.0090815	5.02	0.000	.0558174
PTSDw1	0273235	.0279563	-0.98	0.328	0435452
anxagw1	.0453168	.0337597	1.34	0.179	.0772486
anxagw3	.145092	.090445	1.60	0.109	.1607203
injselfr	.7707672	.6389143	1.21	0.228	.017141
cumdose2	.2647252	.0963397	2.75	0.006	.0175311
depagw1	.2816186	.044662	6.31	0.000	.3805568
fdferw1	.006688	.0057322	1.17	0.243	.0121409
PTSDw3	.0315564	.015806	2.00	0.046	.012835
anxagw2	. 4322269	.0477133	9.06	0.000	.4670226
cumdose1	3.728569	1.303943	2.86	0.004	.0982313
cataw1	4795867	1.715818	-0.28	0.780	0072915
Vodkaw1	1.877856	.9541261	1.97	0.049	.0918835
whpsl~p <-	4.066716	1.933544	0 10	0.035	1037400
crhrw1 crhrw2	5.604311	1.366122	2.10 4.10	0.000	.1237499 .1571477
crhrw3	1.391487	.3259059	4.10	0.000	.0398312
PTSDw2	0410296	.0143171	-2.87	0.004	0110673
BSIanx	3.276929	.4325614	7.58	0.004	.3861697
depagw2	.0888622	.0193943	4.58	0.000	.055476
depagw2 depagw3	.1633225	.0303032	5.39	0.000	.1098015
whpsleep	0059158	.0082971	-0.71	0.476	0059158
Wilpsieep Vodkaw2	2.886739	.8380951	3.44	0.001	.0867487
fdferw2	.0795556	.0320349	2.48	0.001	.0654542
BSIdep	1.681745	.1992335	8.44	0.000	.2025082
PTSDw1	.0677401	.0244589	2.77	0.006	.0725792
	.0467854	.0116488	4.02	0.000	.0536172
anxagw1 whpel	.0558678	.0090979	6.14	0.000	.0620676
anxagw3	.1130213	.0339356	3.33	0.000	.0841685
MiPTSD	3863453	.1404398	-2.75	0.001	1481142
injselfr	5.664994	.5765389	9.83	0.000	.0846981
cumdose2	.2277357	.0828784	2.75	0.006	.0101393
	.1972332	.0313828	6.28	0.000	
depagw1 fdferw1	.0612467	.0013626	6.18	0.000	.1791843
PTSDw3	.6515214	.2195371	2.97	0.000	.1781555
	.1739946	.0178123	9.77	0.003	.1263932
anxagw2 cumdose1	6.47391	1.559004	4.15	0.000	.1263932
cumdosei cataw1	3.474968	1.559004	2.28	0.000	.0355192
Vodkaw1	3.474968	.6722811	5.50	0.023	.1216093
	1 0.00004	.0122011			.1210035

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		(St	ca. Err.	adjusted i	or 362 clusters in id)
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
Vodkaw2 <-					
crhrw1	068062	.0465541	-1.46	0.144	0689208
crhrw2	.0705797	.0460424	1.53	0.125	.0658583
depagw2	.0005573	.0001012	5.51	0.000	.0115772
Vodkaw2	.0022809	.0008099	2.82	0.005	.0022809
fdferw2	.0004822	.0000999	4.83	0.000	.0132027
PTSDw1	5.21e-06	.0000302	0.17	0.863	.0001857
anxagw1	000012	.0000259	-0.46	0.644	0004569
injselfr	0063342	.0085239	-0.74	0.457	0031515
cumdose2	.0028681	.0010438	2.75	0.006	.0042492
depagw1	.0002135	.0000354	6.03	0.000	.0064532
fdferw1	0000241	.0000908	-0.27	0.790	0009802
anxagw2	.0002701	.0000394	6.86	0.000	.0065292
cumdose1	.0088061	.0067769	1.30	0.194	.0051904
cataw1	0295719	.0179777	-1.64	0.100	0100586
Vodkaw1	.8187381	.0754757	10.85	0.000	.8962449
fdferw2 <-					
crhrw1	-2.011499	.1499055	-13.42	0.000	0743967
crhrw2	-3.716625	1.724252	-2.16	0.031	1266682
depagw2	0293454	.0053294	-5.51	0.000	0222669
Vodkaw2	1201112	.0426483	-2.82	0.005	004387
fdferw2	0253934	.005261	-4.83	0.000	0253934
PTSDw1	. 1213158	.0420996	2.88	0.004	.1579854
anxagw1	.0888608	.0190468	4.67	0.000	.1237761
injselfr	-3.190799	.3379383	-9.44	0.000	0579838
cumdose2	1510281	.0549627	-2.75	0.006	0081727
depagw1	.1028252	.0094489	10.88	0.000	.113541
fdferw1	.3271688	.0416215	7.86	0.000	.4853175
anxagw2	0142232	.0020728	-6.86	0.000	0125579
cumdose1	1.535048	.8531069	1.80	0.072	.0330464
cataw1	6.899171	1.797879	3.84	0.000	.0857122
Vodkaw1	.7325007	.362736	2.02	0.043	.0292872

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		(50	а. шт.	aajastea 10	1 362 Clusters III Id)
		Robust		5 . 1. 1	a a
	Coef.	Std. Err.	z	P> z	Std. Coef.
BSIdep <-					
crhrw1	.3029518	.0735126	4.12	0.000	.0765582
crhrw2	1.03332	.0613197	16.85	0.000	.2406235
crhrw3	.8494106	.1989439	4.27	0.000	.20192
PTSDw2	0021862	.0007629	-2.87	0.004	0048973
BSIanx	.0518185	.0068401	7.58	0.000	.0507123
depagw2	.0197019	.0017368	11.34	0.000	.1021441
depagw3	.020908	.0038337	5.45	0.000	.1167326
whpsleep	.0157196	.0018506	8.49	0.000	.1305444
Vodkaw2	.8782755	. 2543839	3.45	0.001	.2191813
fdferw2	.009594	.0015868	6.05	0.000	.0655518
BSIdep	.0265936	.0031505	8.44	0.000	.0265936
PTSDw1	.0069797	.002118	3.30	0.001	.0621045
anxagw1	.0043962	.0012195	3.60	0.000	.0418402
whpel	.0341036	.0055537	6.14	0.000	.314645
anxagw3	.0060222	.0021411	2.81	0.005	.0372448
MiPTSD	0061093	.0022208	-2.75	0.006	0194505
injselfr	.8493619	.0914531	9.29	0.000	.1054592
cumdose2	.0419898	.0152811	2.75	0.006	.0155252
depagw1	.0155217	.0013673	11.35	0.000	.1171052
fdferw1	.0068411	.0010375	6.59	0.000	.069337
PTSDw3	.0642593	.0249037	2.58	0.010	.145923
anxagw2	.0144466	.0013746	10.51	0.000	.0871511
cumdose1	1.144821	.3945761	2.90	0.004	.1683934
cataw1	035302	.1605098	-0.22	0.826	0029966
Vodkaw1	.7628306	.2088894	3.65	0.000	.2083927
PTSDw1 <-					
depagw1	.5460726	.0759595	7.19	0.000	.4630247
cumdose1	11.84727	4.232877	2.80	0.005	.1958491
cataw1	39.20859	5.376336	7.29	0.000	.3740483
Vodkaw1	3.820257	1.518111	2.52	0.012	.1172906
anxagw1 <-					
PTSDw1	.3374853	.0701705	4.81	0.000	.3155204
depagw1	.7245691	.0741638	9.77	0.000	.574389
cumdose1	10.32556	3.781678	2.73	0.006	.1595841
cataw1	19.74469	4.11913	4.79	0.000	.1761041
Vodkaw1	5.068996	1.963597	2.58	0.010	.1455007

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		(St	d. Err.	adjusted	for 362 clusters in id)
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
whpel <- crhrw1	1.134798	1.010926	1.12	0.262	.0310825
crhrw2	3.931119	.7654516	5.14	0.000	.0992199
crhrw3	.6623615	.1551344	4.27	0.000	.0170662
PTSDw2	0297455	.0103796	-2.87	0.004	0072221
BSIanx	1.55985	.2059034	7.58	0.000	.1654592
depagw2	.1764904	.0196296	8.99	0.000	.0991758
depagw3	.2849252	.078504	3.63	0.000	.1724208
whpsleep	.4731938	.0557083	8.49	0.000	.4259278
Vodkaw2	1.923363	.5076293	3.79	0.000	.0520252
fdferw2	.0467147	.0154536	3.02	0.003	.0345954
BSIdep	.800527	.0948371	8.44	0.000	.0867672
PTSDw1	.1821522	.0553052	3.29	0.001	.17567
anxagw1	.0310589	.0107444	2.89	0.004	.0320388
whpel	.0265936	.0043307	6.14	0.000	.0265936
anxagw3	.0819378	.0289823	2.83	0.005	.0549251
MiPTSD	1839041	.0668507	-2.75	0.005	0634614
injselfr	2.846072	.318	8.95	0.000	.0383016
cumdose2	.1597442	.0581347	2.75	0.006	.0064017
	.2332549	.0219636	10.62	0.000	.1907426
depagw1 fdferw1	.0304511	.0045085	6.75	0.000	.0334519
PTSDw3	.3162505	.1045971	3.02	0.000	.0334313
	.1666476	.0143352	11.63	0.002	.1089643
anxagw2 cumdose1	5.643519	1.63977	3.44	0.000	.0899739
cataw1	7.646529	2.51026	3.44	0.001	.0703516
Vodkaw1	2.716841	.5630276	4.83		.0804448
Voukawi	2.710041	.5030276	4.03	0.000	.0004440
anxagw3 <-					
crhrw1	-2.251468	.7190227	-3.13	0.002	0919978
crhrw2	3.013751	.647007	4.66	0.000	.113476
PTSDw2	3878202	. 1353285	-2.87	0.004	1404712
depagw2	.2398002	.0430143	5.57	0.000	.2010241
depagw3	.5028856	.0862098	5.83	0.000	.4539856
Vodkaw2	.9815072	.3485072	2.82	0.005	.0396059
fdferw2	.0286929	.0047246	6.07	0.000	.0316995
PTSDw1	.0342444	.0196175	1.75	0.081	.0492682
anxagw1	.210701	.0383643	5.49	0.000	.3242434
anxagw3	.0682998	.0425756	1.60	0.109	.0682998
injselfr	.1419408	.3174049	0.45	0.655	.0028497
cumdose2	.1224662	.0445683	2.75	0.006	.0073216
depagw1	. 2444495	.0247997	9.86	0.000	.2982084
fdferw1	.0091483	.0039828	2.30	0.022	.0149925
PTSDw3	.2323467	.1163781	2.00	0.046	.0853135
anxagw2	.8293894	.063405	13.08	0.000	.8090165
cumdose1	3.317559	1.222558	2.71	0.007	.0789041
cataw1	2.683964	1.594554	1.68	0.092	.0368384
Vodkaw1	3.20563	1.408735	2.28	0.023	.1415993

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		(St	d. Err.	adjusted for 3	362 clusters in id
		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef
MiPTSD <-					
crhrw1	-1.262938	.7378226	-1.71	0.087	100244
crhrw2	2.932996	.8016982	3.66	0.000	.214524
crhrw3	.7941665	.1860049	4.27	0.000	.059297
PTSDw2	0235534	.0082189	-2.87	0.004	016572
BSIanx	1.870249	.2455059	7.62	0.000	.574896
depagw2	.1681556	.0373156	4.51	0.000	.273828
depagw3	.0959824	.0180021	5.33	0.000	.168318
whpsleep	.0807697	.01596	5.06	0.000	.210682
Vodkaw2	2.128235	.566931	3.75	0.000	.166822
fdferw2	.1287518	.0241653	5.33	0.000	.276311
BSIdep	.9598258	.113709	8.44	0.000	.301476
PTSDw1	.0454014	.0171182	2.65	0.008	.126886
anxagw1	.0458941	.0180949	2.54	0.011	.137192
whpel	.0318856	.0051925	6.14	0.000	.092400
anxagw3	.0648809	.0194815	3.33	0.001	.126033
MiPTSD	2204997	.0801535	-2.75	0.006	220499
injselfr	.8383846	.2596494	3.23	0.001	.032696
cumdose2	.1191847	.0433741	2.75	0.006	.013841
depagw1	.0929591	.0298203	3.12	0.002	.220288
fdferw1	.0508818	.0070227	7.25	0.000	.161980
PTSDw3	.3887892	.0742337	5.24	0.000	.277308
anxagw2	.012886	.0357641	0.36	0.719	.024416
cumdose1	3.478359	.8622135	4.03	0.000	.160702
cataw1	-1.673444	1.387116	-1.21	0.228	044617
Vodkaw1	1.597934	.4027451	3.97	0.000	.137111
injse~r <-					
PTSDw1	.001007	.0002094	4.81	0.000	.072166
anxagw1	.0029839	.0005799	5.15	0.000	.228721
depagw1	.0021621	.0002213	9.77	0.000	.131374
fdferw1	.0015706	.0006401	2.45	0.014	.128208
cumdose1	.0308106	.0127839	2.41	0.016	.036500
cataw1	.0589165	.0170264	3.46	0.001	.040278
Vodkaw1	.0151255	.0066733	2.27	0.023	.033279
cumdo~2 <-					
cumdose1	2.188894	.0836046	26.18	0.000	.870800
depagw1 <-					
cumdose1	11.71117	4.252571	2.75	0.006	.228323
cataw1	12.05375	4.692115	2.57	0.010	.135617
Vodkaw1	6.995877	2.674015	2.62	0.009	.253313

Table 10 Total effects continued:

(Std. Err. adjusted for 362 clusters in id)

		Robust			
	Coef.	Std. Err.	z	P> z	Std. Coef.
cumdo~3 <-					
cumdose2	1.231235	.0359156	34.28	0.000	.9679575
cumdose1	2.695043	.1392837	19.35	0.000	.8428975
fdferw1 <-					
PTSDw1	.1005493	.0209064	4.81	0.000	.0882723
anxagw1	. 2979369	.0570277	5.22	0.000	.2797673
depagw1	.2158758	.0220961	9.77	0.000	.1606952
cumdose1	3.076366	1.253654	2.45	0.014	.0446464
cataw1	5.882672	1.780709	3.30	0.001	.0492682
Vodkaw1	1.510241	.6474416	2.33	0.020	.0407063
PTSDw3 <-					
crhrw1	7049673	.2358145	-2.99	0.003	0784512
crhrw2	.8717156	.2216259	3.93	0.000	.0893902
PTSDw2	0080959	.002825	-2.87	0.004	0079862
depagw2	.1053293	.0117754	8.94	0.000	.2404731
depagw3	.1642012	.0441687	3.72	0.000	.4037084
Vodkaw2	.4311151	.1530775	2.82	0.005	.0473781
fdferw2	.0409945	.0156859	2.61	0.009	.123345
PTSDw1	.0021865	.0046807	0.47	0.640	.0085675
anxagw1	.0164524	.0054493	3.02	0.003	.0689528
anxagw3	.0223011	.0139017	1.60	0.109	.0607359
injselfr	.0072081	.0954708	0.08	0.940	.0003941
cumdose2	.0354229	.0128912	2.75	0.006	.0057675
depagw1	.0515001	.0067778	7.60	0.000	.171103
fdferw1	.0338787	.0103168	3.28	0.001	.1512088
PTSDw3	.0048503	.0024294	2.00	0.046	.0048503
anxagw2	.0659387	.0072626	9.08	0.000	.1751694
cumdose1	.6925846	.3060572	2.26	0.024	.0448613
cataw1	. 2929954	.3141094	0.93	0.351	.0109522
Vodkaw1	. 3465579	.1984351	1.75	0.081	.041691
anxagw2 <-					
PTSDw1	.0959803	.0199564	4.81	0.000	.1415665
anxagw1	. 2843984	.0468098	6.08	0.000	.4486761
depagw1	.2060663	.0210921	9.77	0.000	.2577146
cumdose1	2.936574	1.195044	2.46	0.014	.0716016
cataw1	5.615359	1.519635	3.70	0.000	.0790137
Vodkaw1	3.689254	1.56098	2.36	0.018	.1670658

10.7 Cyclical contribution to persistence

10.7.1 Wave 3 self-reported depression - anxiety cycle

When review Figure 6 on page 56, we can identify two feedback cycles. The first of these cycles exists between expressions of anxiety in wave 3 and self-reports of depression in the same wave. The second is the relationship between BSI anxiety

and the Chornobyl MiPTSD at the time of the interview. Ordinarily, we assume that there is no reverse causation in the path diagram, except in cases where we find arrows pointing to the other of two variables. If one arrow is called β_1 and the other arrow is called β_2 , these two arrows identify a situation of reciprocal causation. Under these circumstances, the feedback, holding all other effects constant, is defined by

$$(I - \beta_1 \beta_2)^{-1} = 1 + \beta_1 \beta_2 + (\beta_1 \beta_2)^2 + (\beta_1 \beta_2)^3 + \cdots$$
 (2)

We can graph the decay rate of these effects. First consider the wave 3 cycle between self-reported depression and self-reported anxiety. We can examine the reciprocal effects on the reciprocal effects of a unit impulse on the β_i parameters.

On page 95 and 91, respectively, we find

anxagw3 = 0.453*depagw3depagw3 = 0.163*anxagw3

which generates the direct effect decay depicted in Figure 5.

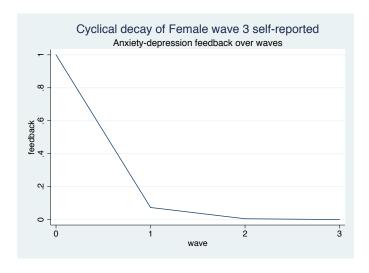


Figure 5: Wave 3 Depression anxiety cyclical decay among women

If we make the assumption that the indirect effects of a variable upon itself through other variables are more or less immediate and occur during the same wave, we may observe feedback of those direct effects along with the indirect effects of the variable upon itself. If we add to those direct effects, the indirect effects of the variable upon itself mediated by other variables, with an assumption of a unit impulse on both depagw3 and anxagw3 on pages 91 and 95 we observe the decay depicted in Figure 6 which boosts the fist impulse to delay

the decay slightly.

$$(1-0.069)$$
anxagw3 = $.453*$ depagw3 $(1-0.069)$ depagw3 = $.163*$ anxagw3

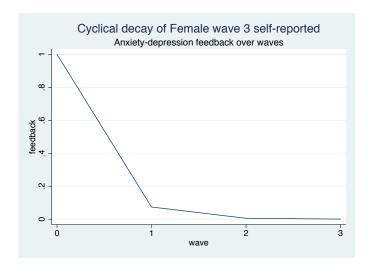


Figure 6: Wave 3 Feedback of depression- anxiety total effects cyclical decay among women

The assumption required for recycling the total rather than the direct effects requires that the indirect effects of the variable upon itself through other variables takes place during the same wave, an assumption that may not be warranted. Be that as it may, the delay in decay provides for persistence of the effects on women that has implications for the recovery of victims of these effects.

10.7.2 Current BSI anxiety- MiPTSD cycle

From pages 90 and 96, we can obtain the standardized coefficients needed for formulation of persistence of reciprocal direct effects.

$$(I - \beta_1 \beta_2)^{-1} = 1 + \beta_1 \beta_2 + (\beta_1 \beta_2)^2 + (\beta_1 \beta_2)^3 + \cdots$$
 (3)

and they are

$$BSIanx = -0.287 * MiPTSD$$

$$MiPTSD = 0.578 * BSIanx$$
(4)

If we partial out the cyclical effect from others in the model, the decay should resemble an exponentially declining undulation owing to the negative sign before the effects by graphically approximating $(1 + (-.287) * (.578)) + \{(-.287) * (.578)\}^2 + \{(-.287) * (.578)\}^3 + \cdots$ depicted in Figure 7. Usually negative feedback reduces persistence and contributes to a more short-lived effect.

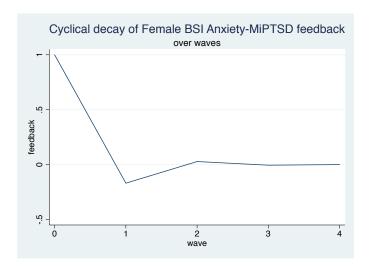


Figure 7: Undulating decay of Anxiety-PTSD feedback cycle among women

Because the assumption required to add the indirect effects of the variable upon itself mediated by others may well require a delay, we will not belabor the delayed decay of the reciprocal effect at this point.

10.8 Hypothesis recapitulation

We use the last two tables of this report to summarize the direct and indirect effect findings. Within those table an arrow signifies the direction of a relationship going from the point of origin to the target endogenous variable. A negative sign indicates an inverse relationship, such that if one variable increases, the associated variable decreases.

In the female model we observe no evidence to support hypothesis 3 that radiation directly predicts Chornobyl PTSD as measured by the revised civilian Mississippi PTSD scale.

Nor did we find evidence to support hypothesis 6 that perceived risk of exposure predicts PTSD either.

Moreover, we find no evidence in support of hypothesis 12 that radiation direct predicts substance abuse. There is no path coming from cumulative external dose in wave 1 or later to support this hypothesis.

In support of hypothesis 16, that perceived risk of exposure predicts substance abuse, we find one statistically significant direct path from perceived risk

of exposure in wave 1 (crhrw1 stdized $\beta = -0.110$, p = 0.020). The relationship is a statistically significant inverse rather than a direct one. Vodka consumption appears to dulls the awareness of perceived risk. Perhaps the more one drinks the less one is aware of any risk in the midst. The path emanating from perceived Chornobyl health risk in the following decade is not statistically significant (crhrw2 stdized $\beta = 0.067$, p = 0.123). Moreover, there is no supporting a relationship in wave 3. Therefore, hypothesis 16 appears partly supported by the evidence in 1986. After 1986 this concern seems to have disappeared.

Table 11: Hypothesis Direct effect test result summary table

Hyp #	Exog. var	Endog. var	Gender	General Result	effect(s) confirmed
3	dose	MiPTSD	male	unsupported	none
3	dose	MiPTSD	female	unsupported	none
4	dose	BSI	male	unsupported	none
4	dose	BSI	female	partial	$(\text{cumdose1} \rightarrow BSIdepw1)$
5	perceived risk	BSI	male	partial	(BSIanxw2)
5	perceived risk	BSI	female	partial	$(\operatorname{crhrw1} \to -BSIanxw1)$
5	perceived risk	BSI	female	partial	$(\operatorname{crhrw2} \to BSIanx2)$
6	perceived risk	PTSD	male	unsupported	none
6	perceived risk	PTSD	female	unspported	none
8	perceived risk	Nottingham	male	partial	$(\operatorname{crhrw2} \to whpsleep)$
8	perceived risk	Nottingham	female	partial	$(\operatorname{crhrw1} \to whpsleep)$
12	dose	substance abuse	female	unsupported	none
16	perceived risk	substance abuse	female	partial	$(\operatorname{crhrw}1 \to -vodkaw1)$

10.8.1 Hypothesis 20: Nottingham health mediates a dose-substance abuse relationship

Only two of our hypotheses pertain to indirect effects concerning the variables in the female model. They are hypothesis 20 and 24, which pertain to substance abuse (involving drinking and/or smoking abuse). Although we deal with substance abuse with both drinking and smoking in another analysis, in this analysis we have in the female model only vodka consumption variables (number of vodka drinks per week). Because we only have variables pertaining to part of the hypothesis in the female model, at the most there can be only a partial testing of the hypothesis in this model. Nonetheless, we examine the relationship that emerged as part of the model.

Hypothesis 20 refers to dose and perceived risk being exogenous variables, Nottingham variables serving as mediators, and (smoking and/or drinking) being the target endogenous variables, respectively. Therefore, there are at least two indirect links to confirm as statistically signification. One of these extends

from the point of origin (dose) to the mediator under consideration (either sleep or energy level). The other indirect path extends from the mediator to the target endogenous variable (drinking in this case). These are indirect paths because other intermediating variables may be inter-positioned between the point of origin and the point of destination, permitting multiple orders of mediation.

For the data in Table reffidnhsmdr, we have to turn to Table 9 first. This is where the data are for indirect effects. In the Vodkaw2 panel on page 83 panels, we have to look for any cumdose to find out whether there is such a point of origin from which an indirect path may extend to the Vodkaw2 endogenous variable.

We are do discover such a path. Although there is no statistically significant cumdose1 path (p = 0.194), but is a significant path originating in external dose in wave 2 cumdose2 stdized β = 0.004, p = 0.006). Nor is there a significant cumdose3 path. Therefore, only a wave 2 cumulative dose point of origin would work for radiation dose if hypothesis 20 were to be partly true.

If hypothesis 20 is consistent with the data, there would be an indirect significant path also from the Nottingham sleep or energy level measure under consideration to the point of origin. We have found a possible source in cumdose2. When we go to page 82 and examine the Nottingham sleep panel, we find a significant indirect path for cumdose2 cumdose2 stdized $\beta = 0.010, p = 0.006$)... Therefore, we find evidence of possible sleep mediation of an indirect path between Vodka consumption in the decade after Chornobyl and reconstructed external dose. Next we turn to page 85 and examine the energy level panel, within which we find a significant indirect path originating in cumdose2 (cumdose2 stdized $\beta = 0.006, p = 0.006$). It appears that there is reason to believe that there are significant indirect paths from vodka in wave 2 to the Nottingham measures of sleep and energy level, from which there are significant indirect paths to radiation dose as measured by cumulative external dose in wave 2. Insofar as the hypothesis 20 is confirmed for wave 2, we have to say that the data are consistent with hypothesis 20. In the table below, we call this partial confirmation of both sleep and energy level mediating paths.

10.8.2 Hypothesis 24: Nottingham health mediates a perceived risk -substance abuse relationship

As for hypothesis 24, we use the same table 9 in which to look for our evidence. For hypothesis 24, we search for a statistically the Vodkaw2 panel on page 83 for evidence of a statistically significant path originating in one or more of the perceived risk waves. We find a statistically significant indirect path originating in crhrw1 (crhrw1 stdized $\beta=0.039, p=0.000$)., and we find a statistically borderline significance in the next wave (crhrw2 stdized $\beta=-0.002, p=0.051$). The first wave exhibits a positive (direct) relationship, whereas the second wave exhibits a possible inverse relationship. Perhaps the less the perceived risk, the more relaxed the person may become and the less use he may have of escape.

For confirmation that hypothesis 24 is mediated by Nottingham health mea-

sures we go to the indirect effects sleep panel first, on page 82, where we identify a nonsignificant crhrw1 path (crhrw1 stdized $\beta = -0.073, p = 0.054$), and a significant path for waves $2 \ crhrw2$ stdized $\beta = .157, p = 0.000$, not to mention a significant one at wave 3 as well. But only the wave 1 indirect path must be significant for this link to be a activated. Yet that is not possible if the wave 1 indirect path is not statistically significant, which in this case it is not.

In this case, we turn to the energy level indirect path panel on page 85. In this case, we note that indirect path for wave 1 perceived risk is not statistically significant so the link cannot be completed. The Nottingham health measures do not mediate the relationship between perceive risk and Vodka consumption on the part of the females. Hypothesis 24 appears to be inconsistent with the data.

Table 12: Indirect effect hypothesis test result summary table

Hyp #	Ex. var	End. var	Gender	General Result	effect(s) confirmed
20	dose	Ntm med sub abuse	female	partial confirmation	wave 2 confirmed
24	perceived risk	Ntm med sub abuse	female	disconfirmed	No Nottingham mediat

11 Directions for future research

The impulse response functions characterizing the cyclical decay of effects are the products of linear effects. In future time, we could examine possible non-linear relationships contributing to these cycles. A Granger Causality tests between self-reported anxiety and PTSD suggest that simultaneous equation models would be needed between anxiety and PTSD at every wave. Granger causality tests between self-reported depression and PTSD suggest reciprocal relationships might exist at waves 2 and 3 between these factors. The same holds for reciprocal relationships between anxiety and depression at waves 2 and 3. There appears to be a basis for believing that these cycles are multivariable in nature and we should explore these relationships in greater detail in future research.

A closer inspection reveals that within this model exhibits the same feedback loops between depression and ptsd self-reports during wave 2 and more current BSI anxiety and Nottingham energy level that we found in the male model. It may be that depression and PTSD are intertwined in a way that is similar to anxiety and energy level within PTSD. These interrelationships invite future inquiry into the dynamics of their interaction within the PTSD syndrome.

In future research, we should explore the cyclical differences at every wave in these reciprocal relationships. Moreover, we could explore the closed system assumption with a broader test of exogeneity of reconstructed dose and other endogenous variables in the model.

References

- [1] Bollen, K. 11989 Structural Equations with Latent Variables New York: Wiley, 108.
- [2] Cohen, J. and Cohen, P. 1983 Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences Hillsdale, NJ: Lawrence Earlbaum Associates, 359-360.
- [3] Davidson, R. and McKinnon, J.G. 1993 Estimation and Inference in Econometrics Oxford, UK: Oxford University Press, 245-246, 253-258.
- [4] Doornik, J.A. and Hendry, Sir D.F. 2009 Empirical Econometric Modeling with PcGive, Vol.I. London, U.K.: Timberlake Consultants, Ltd., 142.
- [5] Hendry, Sir David. F. and Richard, J-F. On the Formulation of Empirical Models in Dynamic Econometrics in Hendry, D.F, ed., Econometrics alchemy or science?, chapter 16. Oxford, U.K.: Blackwell, 358-415.
- [6] Joreskog, K. and Sorbom, D. 1989 LISREL 8 Users manual Chicago, Ill: Scientific Software International, Inc., 9, 136-137.
- [7] Joreskog, K. and Sorbom, D. 1988 Prelis 2 Users manual Chicago, Ill: Scientific Software International, Inc., 2-8.
- [8] Nagel, E. 1961 The Structure of Science New York: Harcourt, Brace, and World, 56-78.
- [9] Rudebusch, G.D. 2002 Assessing the Lucas Critique in Monetary Policy Models Federal Reserve Bank of San Francisco, working paper 2002-02 https://docs.google.com/a/nyu.edu/viewer?url=http://www.frbsf.org/publications/economics/papers/2002/wp02-02bk.pdf, accessed 11 Aug 2012
- [10] Sims, Chris *Macroeconomics and Reality* Econometrica, Vol 48, Number 1, 1980, 1-48.
- [11] StataCorp Release 12 Structural Equation Modeling 2011 College Station, TX:Stata Press, Inc., 209-219.