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2 Introduction

2.1 Direct effects hypotheses

In this paper, we will examine several hypotheses testing direct and indirect
effects. Four hypotheses concern direct effects. They are hypotheses 2, 7, with
respect to both men and women, and for females hypotheses 9 and 13.

2.1.1 Hypothesis 2

Hypothesis 2 suggests that radiation dose directly explains medically diagnosed
illness count.For this hypothesis we test both males and females.

2.1.2 Hypothesis 7

Hypothesis 7 suggests that perceived risk directly explains medically diagnosed
illness count, and we test this hypothesis with men and women.

2.1.3 Hypothesis 9

Hypothesis 9 suggests that radiation dose directly explains voluntary abortions,
which we use only our female sample for testing.

2.1.4 Hypothesis 13

hypothesis 13 submits that perceived risk directly explains voluntary abortions.
We use only our female sample to test this hypothesis.

2.2 Indirect effects hypotheses

We use the female sample to test two hypotheses relating to indirect effects.

2.2.1 Hypothesis 17

This hypothesis postulates that radiation dose indirectly predicts voluntary
abortions mediated by the number of medically diagnosed illnesses.
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2.2.2 Hypothesis 21

This hypothesis postulates that perceived risk indirectly effects voluntary abor-
tions while being mediated by the number of medically diagnosed illnesses. Al-
together, we are testing 6 hypotheses in this paper.

2.3 Summary tables

At the end of this paper we have summary tables indicating the nature of the
hypothesis and the test results. Readers merely wanting a quick review should
examine the tables at the end of this paper.

3 Statistical Methods

3.1 AutoMetrics automatic modeling

To test these hypotheses we use two different methods, both of which involve lin-
ear regression analysis. We use AutoMetrics for variable selection and automatic
regression model building. AutoMetrics uses a general-to-specific multi-path
search to find the path down which the least number of regression assumptions
are violated. The researcher selects all of the variables to be included in the
model. This is called the “General Unrestricted Model (GUM).” He or she then
sets a probability level to determine the threshold at which variables will be
removed from the model. Variables of borderline significance determined by the
chosen level may be incorrectly retained or dropped from time to time. In gen-
eral there are 2p paths where k= the number of variables in the GUM. The final
GUM, is the union of all of the terminal models, at which point encompassing
tests for non- nested models and for parsimonious encomopassing are applied to
be sure that there is optimal fit among the competing models, which maximizes
the adjusted R2 or minimizes the Schwartz criteria of the competing models.

By multi-path search, we mean that it examines every possible combination
of explanatory variables to arrive at an optimal model. If a combination of
explanatory variables violates a misspecification test, the path is terminated
and an alternative path is tested. If a path is terminal, it reaches a combination
of variables that arrives at a solution.

Candidate terminal models are compared lack of fit and ties are broken by
the Schwartz criteria for the competing models. In this manner, the best model
is selected.

The objective is to minimized the possibility of specification error, which
might bias the magnitude and significance of our regression parameter esti-
mates. This program can be used to test direct effects in a regression model.
It furthermore evaluates the regression model assumptions to show how much
we can trust the model for statistical conclusion validity. It examines the as-
sumptions of residual normality, residual homogeneity, and functional form and
provides indication whether these assumptions have been fulfilled or violated.
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In the event of violation of the assumptions and as an alternative method,
we use structural equation robust path modeling to further test the same hy-
potheses, in addition to testing the indirect hypothesis effects.

3.2 Structural equation path models

Structural equation nonrecursive path models recursive path models are by def-
inition identified. The nonrecursive models are presumed to be just-identified
or over-identified, lest they be inestimable by full-information maximum likeli-
hood. Furthermore, we test them for stability before accepting them as valid
and show that they are stable. They presume unidirectional causality and pre-
clude reverse causality. They assume a closed system, so that all important
variables are deemed to be resident within the model. Such path models are
not unique; there may be several alternative models using the same variables
and the same data.

3.3 Relative advantages of the two methods

AutoMetrics is preferred for variable selection and model-building of regression
models from a large number of variables, especially when the number of vari-
ables exceeds the number of cases, and therefore at reducing the probability of
specification error, but structural path models are better at revealing mediating
effects in the same model, even though they are not unique. Both protocols can
complement one another.

3.4 Direct effects

Our hypotheses have been formulated in a path analytical framework, where we
distinguish between direct and mediating effects. In order to clarify whether
an effect is mediated or direct helps demystify much of the potential causal
association among variables. However, this is not something which has been
AutoMetrics has been designed to do. It emphasizes variable selection and
model building in a manner that is theoretically defensible and has a way around
the multiple testing problem. When we do our data mining with AutoMetrics,
we nonetheless use a conservative approach by specifying a minute probability
as the level of variable selection (p = 0.00001), which is consistent with a Sidak
constraint on the experimentwise error rate, even though AutoMetrics has a 1-
cut technique for sorting the t values and making 1 cut to circumvent the need
for a multiple testing probability correction.

AutoMetrics is ideal for variable selection and regression model-building be-
cause of its multi-path approach to testing all different combinations of variables
to determine which combinations do not violate the regression assumptions. The
path is terminated in the event of a failure of a regression mis-specification test.

Direct effects can be tested with an ordinary least squares regression anal-
ysis. Researchers may attempt to test for such effects in vacuo at first. We
will attempt to place them in a more realistic setting amidst multiple possible
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confounders and to partial out potentially confounding effects so that we can
identify the specific effects we intend to test and then to test them within such
a setting. We find the optimal model with an AutoMetrics general-to-specific
modeling approach and control for all other potential confounders. Because Au-
toMetrics performs this variable selection and regression model building better
than a path model can perform variable selection, we may use that procedure
when variable selection and potential confounder identification is warranted.

We employ the general-to-specific modeling approach applied in AutoMet-
rics, including all of the principal potentially confounding variables as explana-
tory variables, and by the theory of reduction, reducing the model to the optimal
one with respect to fulfillment of the regression assumptions.

3.4.1 Exclusion criteria

When the endogenous variable in our hypothesis happens to be the number
of medically diagnosed illnesses, we have to eliminate the subjective counts of
illnesses as explanatory variables because their inclusion would be tantamount
to testing an approximate tautology, which would add little value to our testing
protocol. Nor would it help us understand what properly estimates of the count
of medically diagnosed illnesses. It would merely cause other highly explanatory
variables to be excluded from the analysis on account of collinearity. We have
to eliminate basis functions from the candidate variable pool that are trans-
formations of the dependent variable as well for the same reasons. Finally, all
variables that are collinear must be examined for inclusion-exclusion on the ba-
sis of their contribution to the explanation and their contribution to fulfillment
of the regression assumptions.

3.4.2 Inclusion Criteria

Those variables that add to the partial R2 and enhance fulfillment of the basic
regression assumptions necessary for statistical congruency could be included.
The regression assumptions for cross-sectional data include independence of vec-
tors, (weak) exogeneity of the explanatory variables, homogeneity of variance of
the residuals, normality of the residuals, lack of collinearity among the explana-
tory variables, and linear and additive functional form. Weak exogeneity means
that all of the useful information can be gleaned from the conditional relation-
ship between the endogenous and exogenous variables through the parameter
estimate and that the explanatory variables are pre-determined. Strong exo-
geneity is needed for forecasting, such that there is no correlation of the errors
with variables in the models, through which feedback and bias may result [12,
128-137], [5, 174].

3.4.3 Misspecification tests for cross-sectional models

Independence of observations is generally assumed and tested with tests for
serial correlation. Residual normality is tested with a Jarque-Bera test. Het-
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eroskedasticity is tested with two forms of White’s general specification test.
Functional form is generally tested with the Ramsey Reset test.

3.5 Mediated or indirect effects

Some of the effects are discussed in a path analytic framework. When these
hypotheses include indirect effects and mediators, it is clear that these effects
cannot be estimated by a single regression analysis alone. For hypotheses 17 and
21, the count of medically diagnosed illnesses is identified as a mediating effect.
These hypotheses have to be tested with some sort of path analytic framework.
Our model is a longitudinal one that traverses several waves of time. For this
reason, we have to use a robust path analysis to accommodate the panel-specific
hetereoskedasticity and the inter-panel serial correlation, for which reason we
ultimately rely on robust panel models for our hypothesis tests.

4 Male model direct effects on number of med-
ically diagnosed illnesses

4.1 Male AutoMetrics regression model

4.1.1 Hypothesis 2 : Direct effects of radiation dose on medically
diagnosed male illness count

When we examine Table 2, we find no evidence of direct effects from cumulative
dose extending to the count of the medically diagnosed illnesses in any wave for
the males. Hypotheses 2 is not supported by data from our male subsample.

4.1.2 Hypothesis 7: Direct effects of perceived risk of exposure on
the number of medically diagnosed illness

Nor do we find that perceived risk to be selected as a predictor of the count
of diagnosed illnesses by doctors. from the male regression analysis in Table
2. Strictly speaking, hypothesis 7 is inconsistent with the data from our male
subsample.

A reader might argue that there are similar variables indicating perception
of risk that are selected. Among them are the proportion of the radioactively
contaminated area and the proportion of pollution due to Chornobyl. However,
if we test the alpha between crhrw1, crhrw2, crhrw3, radw1, radw2, radchw1,
and radchw2, we only obtain an alpha of 0.5714, which is generally not high
enough for a scale, so we would not make too much out of the similarity among
these items.
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Table 1: Variable list for male regression model

Variable name type format Variable label

pillw1 byte %8.0g number of pills for pain per week
in 1976-1986

medcow3 byte %8.0g number of medical visits for a
medical condition per year
1997-now

age byte %8.0g * Respondent´s age
emplw14 byte %8.0g emplw1==3. voluntary
occ5w1 byte %15.0g factory laborer machinist transp

cleaner in 1986
movew3 byte %8.0g Total number of moves experienced

in time period 1996-NOW
shhlw2 byte %8.0g Percentage of strains and hassles

related to health in 1996
shhousw3 byte %8.0g Percentage of strains and hassles

related to housing NOW
contw1 byte %15.0g use of any contraception method

in 1976-1986
radw1 byte %8.0g believed % of the radioactively

contaminated area in 1986
radw2 byte %8.0g believed % of the radioactively

contaminated area in 1996
radchw1 byte %8.0g believed % of polution related to

chornobyl in 1986
radchw2 byte %8.0g believed % of polution related to

chornobyl in 1996
dafter int %8.0g * how many days lapsed after

Chornobyl accident before you
heard about the acciden

dauthw2 byte %8.0g level of danger by authorities
(in percent) in 1996

medw3 byte %8.0g level of danger by general media
(in percent) NOW

neiw1 byte %8.0g level of danger by neighbors (in
percent) in 1986

carcin byte %8.0g * a person exposed to carcinogen is
likely to get cancer (% of
agreement)

WHPel double %9.0g Wtd Health Profile Pt 1 Energy
Level Subscale

HP2probsoc byte %9.0g Hlth profile Pt2: Hlth causing
probs with social life

bf14 bf14= max(0, radw2 - 10) * bf12
bf11 bf11= max(0, 20 - sufamw1)
bf12 bf12= radw2 if radw2 !~ .
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Table 2: H2 and H7: Male model for count of medically diagnosed illnesses

EQ(10) Modelling icdxcnt by OLS-CS
The dataset is: /Users/robertyaffee/Documents/data/research/chwk/
phase3/data/ox/chwide10sep2012mold.dta
The estimation sample is: 2 - 338
Dropped 10 observation(s) with missing values from the sample

Coefficient Std.Error HACSE t-HACSE t-prob Part.R^2
pillw1 0.186596 0.04793 0.03236 5.77 0.0000 0.0980
medcow3 0.126010 0.02280 0.03274 3.85 0.0001 0.0462
age 0.0280895 0.004911 0.003946 7.12 0.0000 0.1421
emplw14 -1.85601 1.332 0.4230 -4.39 0.0000 0.0592
occ5w1 -1.10699 0.3823 0.3449 -3.21 0.0015 0.0326
movew3 0.665057 0.2217 0.2756 2.41 0.0164 0.0187
shhlw2 0.00777531 0.002345 0.002228 3.49 0.0006 0.0383
shhousw3 0.00492730 0.002415 0.002660 1.85 0.0649 0.0111
contw1 -0.342896 0.1129 0.1049 -3.27 0.0012 0.0338
radw1 -0.00743013 0.003314 0.003594 -2.07 0.0395 0.0138
radw2 0.0202849 0.006974 0.007029 2.89 0.0042 0.0265
radchw1 0.00467527 0.003481 0.004018 1.16 0.2455 0.0044
radchw2 -0.00697845 0.003332 0.003610 -1.93 0.0541 0.0121
dafter 0.00439510 0.001575 0.0005668 7.75 0.0000 0.1642
dauthw2 0.00766027 0.003209 0.003601 2.13 0.0342 0.0146
medw3 -0.00528337 0.002951 0.003545 -1.49 0.1371 0.0072
neiw1 -0.00764893 0.002508 0.002720 -2.81 0.0052 0.0252
carcin 0.00831244 0.002684 0.002773 3.00 0.0029 0.0285
WHPel 0.0110772 0.002791 0.002823 3.92 0.0001 0.0479
HP2probsoc -0.348068 0.2661 0.2914 -1.19 0.2331 0.0046
bf14 -0.000161419 7.398e-05 6.608e-05 -2.44 0.0151 0.0191

sigma 1.27035 RSS 493.815878
log-likelihood -531.388
no. of observations 327 no. of parameters 21
mean(icdxcnt) 2.13456 se(icdxcnt) 1.70535
When the log-likelihood constant is NOT included:
AIC 0.540643 SC 0.784035
HQ 0.637760 FPE 1.71741
When the log-likelihood constant is included:
AIC 3.37852 SC 3.62191
HQ 3.47564 FPE 29.3325

Normality test: Chi^2(2) = 9.0841 [0.0107]*
Hetero test: F(37,288) = 1.6733 [0.0112]*
RESET23 test: F(2,304) = 4.1100 [0.0173]*

4.2 Male Path Model

Another test of hypotheses 2 and 7 for males can be performed with a path
analytical model, as shown in Figure 1. The color-coded model exhibits the
radiation dose variables as rose colored boxes with red direct effects. The per-
ceived risk variables are represented as orange boxes with dark orange direct ef-
fects. Fear of consuming contaminated food variables are colored light blue-gray
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medium blue direct effects, whereas the count of medical diagnoses is colored
a lighter grey with green arrows extending form it to two of the Nottingham
health scales–energy level in cyan and physical abiliity in Kakhi. Sleep is golden
with purple arrows protruding from it.

Figure 1: Male icdxcnt path model

4.2.1 Hypothesis 2: Male path model test results

From our analysis of the male path model, we find no evidence supporting a
direct effect of cumulative radiation dose on the number of medically diagnosed
diseases, as shown in Figure 1.
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4.2.2 Hypothesis 7: Male path model test results

From our analysis of the male path model, we find evidence to support the
hypothesis that perceived risk of exposure directly predicts the number of med-
ically diagnosed illnesses in waves 1 and 2. Therefore, we have to say that there
is partial evidence in support of this hypothesis. The evidence is partial insofar
as 2 out of 3 waves exhibit this evidentiary support.

5 Female model direct effects on number of med-
ically diagnosed illnesses

5.1 Female AutoMetrics regression model

The regression analysis to test hypotheses 2 and 7 among the female subsample
follows. The variable selection process for identifying the optimal model did
not trim down the model as much as we might have preferred even though we
used a minute variable selection probability (p = 0.0001) for both the male and
the female. We had to prune out some nonsignificant paths from the female to
obtain this much of a reduction. Moreover, 99 observations were dropped owing
to the missing values on some of the variables selected for the optimal regression
model.

5.1.1 Hypothesis 2: Direct dose effects on medically diagnosed ill-
ness count

To test the hypotheses 2, and 7, we have to ask whether for a direct effect
were any of the cumulative dose or perceived risk variables selected to directly
predict the count of medical diagnoses. From waves 1 and 2, the cumulative ex-
ternal dose variables were identified as directly predicting the number of medical
diagnoses.
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Table 3: Hypothesis 2 female test

Table 3

Hypothesis 2 female test results

Variable Coefficient Std.Error HACSE t-HACSE t-prob Part.R^2
cumdose1 1.98759 0.6911 0.6521 3.05 0.0026 0.0412
cumdose2 -0.759593 0.2981 0.2730 -2.78 0.0059 0.0346

Although cumdose3 was not selected, we can say that we have partial evi-
dence in female support of hypothesis 2 from Table 3.

5.1.2 Hypothesis 7 Direct perceived risk effects on medically diag-
nosed illness count

Hypothesis 7 stipulates that perceived risk of exposure directly explains or pre-
dicts the number of medically diagnosed illnesses. But the crhrw variables are
not to be found among those selected for the optimal regression model to predict
female icd9 count. According to a strict interpretation of the meaning of the
variables, we cannot therefore say that we have evidence from our female model
to support hypothesis 7.

5.2 Female path model

Therefore, we examine the female path model in Figure 2 and the direct effects
in the clustered robust Table 6.

5.2.1 Hypothesis 2

We find no evidence to support hypothesis 2 in any wave.

5.2.2 Hypothesis 7

Nor do we find any evidence in this path model to support hypothesis 7 in any
wave.

However, if we permit a broader construction of perceived risk of exposure,
we might find some support in the regression analysis in Table 5.2.2. Among
them are found forms of fear of exposure in waves 1 and 3, including airw1,
radw1, radfmw3, radhlw3, radtlw3, radtlw3, goferw3, and fdferw3. These refer
respectively to fear of air and water pollution due to Chornobyl, the percent of
the pollution due to Chornobyl, percent belief that the health of one’s family
has been affected by Chornobyl, the percent belief that one’s own health has
been affected by Chornobyl, fear of long-term or lifetime exposure in wave 3, a
fear of going outdoors in wave 3, and a fear of consuming contaminated food
in wave 3. All these are forms of fear of exposure. In a broad sense, we could
say that these forms of fear of exposure directly predict the count of medically
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diagnosed diseases in waves 1 and 3. In these respects, we have a penumbra of
support for prediction of the number of medically diagnosed illnesses in waves
1 and 3 among females.
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Table 4: Direct effects on count of medical diagnoses among females

EQ(40) Modelling icdxcnt by OLS-CS
The dataset is: /Users/robertyaffee/Documents/data/research/
chwk/phase3/data/ox/chwide10sep2012fold.dta
The estimation sample is: 2 - 362
Dropped 99 observation(s) with missing values from the sample

Coefficient Std.Error HACSE t-HACSE t-prob Part.R^2
age 0.0303113 0.009709 0.01002 3.02 0.0028 0.0406
edu2 -0.945011 0.4160 0.3901 -2.42 0.0162 0.0265
marrw13 -0.343753 0.2589 0.2567 -1.34 0.1820 0.0082
marrw21 1.06130 0.3432 0.3254 3.26 0.0013 0.0469
marrw23 0.703971 0.2866 0.2494 2.82 0.0052 0.0356
marrw31 -0.875476 0.3574 0.3119 -2.81 0.0055 0.0352
emplw31 -0.984046 0.2025 0.2288 -4.30 0.0000 0.0789
occ3w1 -0.396961 0.2792 0.2705 -1.47 0.1437 0.0099
occ6w3 -1.02105 0.6429 0.3448 -2.96 0.0034 0.0390
inc1w2 -0.459441 0.2142 0.1790 -2.57 0.0109 0.0296
dvcew1 3.60276 0.8846 1.408 2.56 0.0112 0.0294
sepaw1 -4.16134 1.159 1.492 -2.79 0.0058 0.0348
accdw3 0.773016 0.2460 0.2434 3.18 0.0017 0.0446
shrelaw1 0.00932040 0.002417 0.002762 3.37 0.0009 0.0501
suprtw3 -0.00937121 0.002244 0.002271 -4.13 0.0001 0.0731
sufamw2 0.00651415 0.002322 0.002267 2.87 0.0045 0.0368
contw1 0.833298 0.2182 0.2544 3.28 0.0012 0.0473
contw2 -0.496042 0.2180 0.2285 -2.17 0.0311 0.0213
ncontw2 -0.528386 0.1855 0.1914 -2.76 0.0063 0.0341
beerw2 -0.0331456 0.02358 0.01277 -2.59 0.0101 0.0302
liqw1 0.126191 0.06953 0.07014 1.80 0.0734 0.0148
hospw2 -0.00454063 0.006422 0.004734 -0.959 0.3386 0.0042
mhoutw1 -1.20100 0.3831 0.4093 -2.93 0.0037 0.0383
mhoutw2 1.26193 0.3903 0.4420 2.86 0.0047 0.0364
goferw3 -0.0158404 0.006980 0.005756 -2.75 0.0064 0.0339
fdferw3 0.0147139 0.004684 0.003201 4.60 0.0000 0.0891
trrepw2 0.00812814 0.002751 0.002663 3.05 0.0026 0.0414
evacselfr -1.05776 0.3268 0.3379 -3.13 0.0020 0.0434
airw1 0.00671090 0.002608 0.002338 2.87 0.0045 0.0367
radw1 -0.0142683 0.002840 0.002743 -5.20 0.0000 0.1113
radtlw3 -0.0357084 0.002971 0.003232 -11.0 0.0000 0.3611
radhlw3 -0.0190519 0.005414 0.006575 -2.90 0.0041 0.0374
radfmw3 0.0102532 0.005407 0.006743 1.52 0.1298 0.0106
source 0.174867 0.05289 0.05719 3.06 0.0025 0.0415
dafter -0.00245213 0.01767 0.01201 -0.204 0.8385 0.0002
medw2 0.00866203 0.003004 0.003056 2.83 0.0050 0.0359
cloud -0.00735021 0.002581 0.002768 -2.66 0.0085 0.0316
chsize -0.00969579 0.003040 0.003293 -2.94 0.0036 0.0386
HP2probsoc -0.702894 0.2902 0.2807 -2.50 0.0130 0.0282
HP2inthob 0.427081 0.2689 0.2272 1.88 0.0615 0.0161
BSIsoma 0.154072 0.02037 0.02671 5.77 0.0000 0.1335
BSIhos -0.0898308 0.03126 0.03985 -2.25 0.0252 0.0230
bf12 0.0108460 0.003499 0.003406 3.18 0.0017 0.0448
bf22 0.000638930 2.965e-05 3.473e-05 18.4 0.0000 0.6105
cumdose1 1.98759 0.6911 0.6521 3.05 0.0026 0.0412
cumdose2 -0.759593 0.2981 0.2730 -2.78 0.0059 0.0346

Continued on the next page...
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Omnibus model fit statistics

sigma 1.18433 RSS 302.969341
log-likelihood -390.795
no. of observations 262 no. of parameters 46
mean(icdxcnt) 3.19466 se(icdxcnt) 2.46436
When the log-likelihood constant is NOT included:
AIC 0.496432 SC 1.12294
HQ 0.748237 FPE 1.64890
When the log-likelihood constant is included:
AIC 3.33431 SC 3.96081
HQ 3.58611 FPE 28.1623

Normality test: Chi^2(2) = 16.293 [0.0003]**
Hetero test: F(75,186) = 1.4124 [0.0322]*
RESET23 test: F(2,214) = 6.9797 [0.0012]**

We should mention that in both cross-sectional regression analyses, all as-
sumptions necessary for statistical congruency with the theory were violated.
Therefore, we would do better to be careful about placing too much faith in all
the details of these models.

6 Female model direct effects on abortions

6.1 Female path model

6.1.1 Hypothesis 9: Radiation dose directly explains number of
medically diagnosed illnesses

This hypothesis pertains to the female model insofar as it deals with voluntary
abortions. . To address this hypothesis and the next one, we use a structural
equation path model, along with a clustered-robust structural path model, the
path diagram for which is displayed in Figure 2.

The boxes in the path diagram are color coded to help interpret the diagram.
The boxes representing the variables have “w” suffixes referring to the wave to
which they refer. Wave 1 is 1986, wave 2 is the decade from 1987-1996, inclusive.
Wave 3 is the years from 1997 to the time of the interview. Any variable without
a wave reference refers to any and all waves. Cumulative dose variables are
represented by rose colored boxes, with red direct effects. Perceived risk of
exposure to Chornobyl radiation exposure are depicted by orange colored boxes
whose direct effects are symbolized by dark orange arrows. Fear of consuming
contaminated food and fluids are cyan boxes with medium blue arrows indicated
their direct effects. The light gray boxes represent voluntary abortions with
purple direct effects. The gold box is the number of medically diagnosed illnesses
with forest green direct effects. The gold box is a Nottingham sleep box with
purple direct effects, the Nottingham energy level variable is represented by a
yellow box with olive direct effects, whereas the Nottingham physical ability
scale is indicated by a mint colored box with mint colored arrows.
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Figure 2: Female exposure, perceived risk, voluntary abortions and number of
medically diagnosed illnesses
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Table 5: Female Path model parameter estimates

The model output supporting this path diagram is included in the Table 5.
The clustered robust direct effects for hypothesis testing follows in Table 6. If
we examine

(1 observations with missing values excluded;
specify option ´method(mlmv)´ to use all observations)

Endogenous variables

Observed: cumdose2 cumdose3 fdferw1 crhrw2 crhrw3 aborw1 illw3 icdxcnt
fdferw3 fdferw2

Exogenous variables

Observed: cumdose1 crhrw1 aborw2 aborw3 illw1 illw2

Structural equation model Number of obs = 362
Estimation method = ml
Log likelihood = -9550.3837

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Structural
cumdo~2 <-
cumdose1 2.188894 .0649526 33.70 0.000 2.061589 2.316199

_cons .1613576 .0418234 3.86 0.000 .0793853 .2433299

cumdo~3 <-
cumdose2 1.314717 .0221427 59.37 0.000 1.271318 1.358116

illw3 .0419176 .0130489 3.21 0.001 .0163424 .0674929
fdferw2 .0016627 .0005875 2.83 0.005 .0005112 .0028143
cumdose1 -.201453 .0554729 -3.63 0.000 -.3101778 -.0927282

_cons .0366882 .020967 1.75 0.080 -.0044063 .0777827

fdferw1 <-
cumdose1 8.753535 3.523999 2.48 0.013 1.846624 15.66045
crhrw1 6.059022 2.054354 2.95 0.003 2.032563 10.08548
_cons 33.6814 2.286827 14.73 0.000 29.1993 38.1635

crhrw2 <-
fdferw1 .0034748 .0007769 4.47 0.000 .0019522 .0049974
aborw1 -.1068016 .0329075 -3.25 0.001 -.1712992 -.042304
crhrw1 .6594244 .0322813 20.43 0.000 .5961542 .7226945
aborw2 -.1003075 .0393379 -2.55 0.011 -.1774084 -.0232066
illw1 .2582233 .0603799 4.28 0.000 .1398808 .3765657
illw2 .2110993 .0338218 6.24 0.000 .1448097 .2773889
_cons -.1179535 .0454289 -2.60 0.009 -.2069924 -.0289145

crhrw3 <-
crhrw2 1.095005 .051542 21.24 0.000 .9939849 1.196026
illw3 .0706981 .0142521 4.96 0.000 .0427646 .0986316
crhrw1 -.1190519 .0379068 -3.14 0.002 -.1933479 -.0447559
aborw3 .0930538 .0341644 2.72 0.006 .0260927 .1600149
_cons -.0619315 .0187248 -3.31 0.001 -.0986315 -.0252315

Continued on the next page...
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Table 5 of Female Model of Number of Medical diagnoses- continued:

OIM
Coef. Std. Err. z P>|z| [95% Conf. Interval]

aborw1 <-
icdxcnt .0599619 .0201282 2.98 0.003 .0205113 .0994124
crhrw1 .1937856 .0491656 3.94 0.000 .0974228 .2901483
_cons .0573689 .0796464 0.72 0.471 -.0987352 .2134731

illw3 <-
crhrw2 .6326686 .0885617 7.14 0.000 .4590909 .8062462
crhrw1 -.7649751 .0799265 -9.57 0.000 -.9216281 -.6083221
illw2 .1856439 .0637737 2.91 0.004 .0606498 .310638
_cons .6285453 .0585738 10.73 0.000 .5137428 .7433478

icdxcnt <-
illw3 .5447237 .102339 5.32 0.000 .3441429 .7453044

fdferw2 .0118556 .0044208 2.68 0.007 .003191 .0205202
aborw2 .4824779 .1549793 3.11 0.002 .1787241 .7862317
illw1 .4690125 .2310932 2.03 0.042 .0160781 .9219468
illw2 .2521321 .1344499 1.88 0.061 -.0113847 .515649
_cons 2.262121 .1607007 14.08 0.000 1.947153 2.577089

fdferw3 <-
aborw1 1.886615 .8010501 2.36 0.019 .3165854 3.456644
illw3 -1.447259 .621503 -2.33 0.020 -2.665382 -.2291355

fdferw2 .7301559 .0324097 22.53 0.000 .6666342 .7936777
_cons .5025388 1.008382 0.50 0.618 -1.473853 2.47893

fdferw2 <-
fdferw1 .3398738 .0307564 11.05 0.000 .2795923 .4001552
_cons 2.493675 1.636532 1.52 0.128 -.7138674 5.701218

Variance
e.cumdose2 .4605615 .0342333 .398124 .5327911
e.cumdose3 .0809005 .0060133 .0699329 .093588
e.fdferw1 1370.578 101.8784 1184.764 1585.534
e.crhrw2 .3111668 .0231746 .2689049 .3600707
e.crhrw3 .0774229 .0068501 .0650967 .0920832
e.aborw1 .7684275 .0571281 .6642339 .8889651
e.illw3 .9925255 .0737764 .8579662 1.148188

e.icdxcnt 4.529445 .3366919 3.915361 5.239842
e.fdferw3 188.6199 14.09157 162.9278 218.3634
e.fdferw2 489.7427 36.40229 423.3492 566.5488

Covariance
e.fdferw1
e.fdferw3 -62.16211 31.18092 -1.99 0.046 -123.2756 -1.048643

e.crhrw2
e.crhrw3 -.0375643 .0178112 -2.11 0.035 -.0724736 -.002655

LR test of model vs. saturated: chi2(72) = 88.19, Prob > chi2 = 0.0944

Stability analysis of simultaneous equation systems
Eigenvalue stability condition
stability index = .2167462
All the eigenvalues lie inside the unit circle.
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Table 6: Female Path model clustered robust direct effects

Before proceeding to a discussion of the direct effects and the hypotheses
they test, we should mention that the model fits the data well. The LR test
of model vs. saturated: χ2(72) = 88.19, Prob > χ2 = 0.0944. Moreover, the
model is a stable on. The stability index = .2167462 so all moduli reside within
the unit circle, satisfying the condition for model stability.

Direct effects
(Std. Err. adjusted for 362 clusters in id)

Robust
Coef. Std. Err. z P>|z| Std. Coef.

Structural
cumdo~2 <-
cumdose1 2.188894 .0836046 26.18 0.000 .8708001

cumdo~3 <-
cumdose2 1.314717 .1775052 7.41 0.000 1.038299
fdferw1 0 (no path) 0
crhrw2 0 (no path) 0
aborw1 0 (no path) 0
illw3 .0419176 .0271581 1.54 0.123 .0278226

icdxcnt 0 (no path) 0
fdferw2 .0016627 .0007575 2.20 0.028 .0243433
cumdose1 -.201453 .3961209 -0.51 0.611 -.0632933
crhrw1 0 (no path) 0
aborw2 0 (no path) 0
illw1 0 (no path) 0
illw2 0 (no path) 0

fdferw1 <-
cumdose1 8.753535 3.105798 2.82 0.005 .1271528
crhrw1 6.059022 2.116446 2.86 0.004 .1511972

crhrw2 <-
fdferw1 .0034748 .0007847 4.43 0.000 .1515927
crhrw2 0 (no path) 0
aborw1 -.1068016 .0262047 -4.08 0.000 -.1111255
illw3 0 (no path) 0

icdxcnt 0 (no path) 0
fdferw2 0 (no path) 0
cumdose1 0 (no path) 0
crhrw1 .6594244 .0368569 17.89 0.000 .7178849
aborw2 -.1003075 .0391308 -2.56 0.010 -.0840425
illw1 .2582233 .0592224 4.36 0.000 .1480249
illw2 .2110993 .0600579 3.51 0.000 .2157106

Continued on the next page...
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Table 6 of Female direct effects on Number of Medical diagnoses- continued:

Robust
Coef. Std. Err. z P>|z| Std. Coef.

crhrw3 <-
fdferw1 0 (no path) 0
crhrw2 1.095005 .0639497 17.12 0.000 1.071873
aborw1 0 (no path) 0
illw3 .0706981 .0178725 3.96 0.000 .0926496

icdxcnt 0 (no path) 0
fdferw2 0 (no path) 0
cumdose1 0 (no path) 0
crhrw1 -.1190519 .0464989 -2.56 0.010 -.1268684
aborw2 0 (no path) 0
aborw3 .0930538 .0557219 1.67 0.095 .0439917
illw1 0 (no path) 0
illw2 0 (no path) 0

aborw1 <-
fdferw1 0 (no path) 0
crhrw2 0 (no path) 0
aborw1 0 (no path) 0
illw3 0 (no path) 0

icdxcnt .0599619 .0231791 2.59 0.010 .1538714
fdferw2 0 (no path) 0
cumdose1 0 (no path) 0
crhrw1 .1937856 .0554688 3.49 0.000 .2027567
aborw2 0 (no path) 0
illw1 0 (no path) 0
illw2 0 (no path) 0

illw3 <-
fdferw1 0 (no path) 0
crhrw2 .6326686 .1148443 5.51 0.000 .4725716
aborw1 0 (no path) 0
illw3 0 (no path) 0

icdxcnt 0 (no path) 0
fdferw2 0 (no path) 0
cumdose1 0 (no path) 0
crhrw1 -.7649751 .1182343 -6.47 0.000 -.6220546
aborw2 0 (no path) 0
illw1 0 (no path) 0
illw2 .1856439 .0936275 1.98 0.047 .1416958

Continued on the next page...
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Table 6 of Female Model of Number of Medical diagnoses- continued:

Robust
Coef. Std. Err. z P>|z| Std. Coef.

icdxcnt <-
fdferw1 0 (no path) 0
crhrw2 0 (no path) 0
aborw1 0 (no path) 0
illw3 .5447237 .0694747 7.84 0.000 .2731281

icdxcnt 0 (no path) 0
fdferw2 .0118556 .0051406 2.31 0.021 .13112
cumdose1 0 (no path) 0
crhrw1 0 (no path) 0
aborw2 .4824779 .1846312 2.61 0.009 .1513996
illw1 .4690125 .1626082 2.88 0.004 .1006944
illw2 .2521321 .1373089 1.84 0.066 .0964927

fdferw3 <-
fdferw1 0 (no path) 0
crhrw2 0 (no path) 0
aborw1 1.886615 1.43568 1.31 0.189 .074969
illw3 -1.447259 .5740939 -2.52 0.012 -.0739975

icdxcnt 0 (no path) 0
fdferw2 .7301559 .0550973 13.25 0.000 .8234611
cumdose1 0 (no path) 0
crhrw1 0 (no path) 0
aborw2 0 (no path) 0
illw1 0 (no path) 0
illw2 0 (no path) 0

fdferw2 <-
fdferw1 .3398738 .0395434 8.59 0.000 .5021123
cumdose1 0 (no path) 0
crhrw1 0 (no path) 0

In the medical diagnosis count panel of Table 6, we observe no direct effects
from either cumulative external dose (hypothesis 2) or perceived risk (hypothesis
7).

6.1.2 Hypothesis 9

Hypothesis 9 suggests that there are dose direct effects on abortions. Therefore,
we have to look in the direct effects table under the abortions panel on page 20
for evidence of a path from cumulative dose. We find none and therefore infer
that this hypothesis is inconsistent with the data.

6.1.3 Hypothesis 13: Perceived risk directly explains female volun-
tary abortions

Yet a review of Table 6.1.1 on page 13 shows no paths from any wave of cumula-
tive external dose to female voluntary abortions. For example, in the voluntary
abortions panel in wave 1 (aborw1 panel) on about page 18, we find a direct
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Table 7: Female clustered robust Indirect effects

effect from crhrw1 crhrw1 stdized β = −0.127, p = 0.010).. Therefore, we
conclude that Hypothesis 13 is partially consistent with our data because only
in wave 1 do we find such a path.

7 Female Model Indirect effects

To review the female indirect effects we examine the table of indirect effects
from two vantage points: From the point of the target endogenous variable,
abortions, and from the panel of the hypothesized mediator– count of medical
diagnosed ailments.

7.0.4 Hypothesis 17: medical illness count mediates an external
dose abortion relationship

This hypothesis postulates that radiation dose indirectly predicts voluntary
abortions mediated by the number of medically diagnosed illnesses.

7.0.5 Hypothesis 21: medical illness count mediates the perceived
risk abortion relationship

This hypothesis postulates that perceived risk indirectly effects voluntary abor-
tions while being mediated by the number of medically diagnosed illnesses.

Table 7 Female Indirect effects
(Std. Err. adjusted for 362 clusters in id)

Robust
Coef. Std. Err. z P>|z| Std. Coef.

Structural
cumdo~2 <-
cumdose1 0 (no path) 0

cumdo~3 <-
cumdose2 0 (no path) 0
fdferw1 .0006564 .0000708 9.27 0.000 .0141971
crhrw2 .0264616 .0048034 5.51 0.000 .0131192
aborw1 -.0028261 .0006934 -4.08 0.000 -.0014579
illw3 -.0000923 .0000118 -7.84 0.000 -.0000613

icdxcnt -.0001695 .0000655 -2.59 0.010 -.0002243
fdferw2 -2.01e-06 8.71e-07 -2.31 0.021 -.0000294
cumdose1 2.883522 .4074403 7.08 0.000 .905956
crhrw1 -.0111166 .0091448 -1.22 0.224 -.006
aborw2 -.0027361 .0021867 -1.25 0.211 -.0011365
illw1 .0067535 .004901 1.38 0.168 .0019194
illw2 .0133079 .0099226 1.34 0.180 .006742

fdferw1 <-
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cumdose1 0 (no path) 0
crhrw1 0 (no path) 0

Table 7 Female Indirect effects---continiued:

Robust
Coef. Std. Err. z P>|z| Std. Coef.

crhrw2 <-
fdferw1 -.0000334 3.60e-06 -9.27 0.000 -.0014571
crhrw2 -.0022022 .0003997 -5.51 0.000 -.0022022
aborw1 .0002352 .0000577 4.08 0.000 .0002447
illw3 -.0034807 .0004439 -7.84 0.000 -.0046599

icdxcnt -.0063899 .0024701 -2.59 0.010 -.0170614
fdferw2 -.0000758 .0000328 -2.31 0.021 -.0022371
cumdose1 .0301244 .0129844 2.32 0.020 .0190902
crhrw1 .001411 .0117009 0.12 0.904 .0015361
aborw2 -.0028621 .0020782 -1.38 0.168 -.002398
illw1 -.0035656 .0022471 -1.59 0.113 -.002044
illw2 -.0027222 .0017641 -1.54 0.123 -.0027816

crhrw3 <-
fdferw1 .0039223 .000892 4.40 0.000 .1674998
crhrw2 .0422186 .0076637 5.51 0.000 .0413267
aborw1 -.1214574 .0298006 -4.08 0.000 -.1237049
illw3 -.0039671 .000506 -7.84 0.000 -.0051989

icdxcnt -.0072828 .0028153 -2.59 0.010 -.0190346
fdferw2 -.0000863 .0000374 -2.31 0.021 -.0024958
cumdose1 .0343338 .0149175 2.30 0.021 .0212981
crhrw1 .6990942 .0607879 11.50 0.000 .7449938
aborw2 -.1175859 .0439989 -2.67 0.008 -.096438
aborw3 0 (no path) 0
illw1 .290242 .0614378 4.72 0.000 .1628647
illw2 .2506192 .0695552 3.60 0.000 .2506837

aborw1 <-
fdferw1 .0003127 .0000337 9.27 0.000 .0131122
crhrw2 .0206191 .0037429 5.51 0.000 .0198168
aborw1 -.0022022 .0005403 -4.08 0.000 -.0022022
illw3 .0325907 .0041567 7.84 0.000 .041934

icdxcnt -.000132 .000051 -2.59 0.010 -.0003388
fdferw2 .0007093 .0003076 2.31 0.021 .0201312
cumdose1 .0027375 .0015074 1.82 0.069 .0016673
crhrw1 -.0098663 .0051401 -1.92 0.055 -.010323
aborw2 .0267983 .0170058 1.58 0.115 .0215793
illw1 .0333853 .017801 1.88 0.061 .0183933
illw2 .025488 .0144102 1.77 0.077 .0250313

Continued on the next page...
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Table 7 Female Indirect effects---continiued:

Robust
Coef. Std. Err. z P>|z| Std. Coef.

illw3 <-
fdferw1 .0021773 .0004952 4.40 0.000 .0709498
crhrw2 -.0013932 .0002529 -5.51 0.000 -.0010407
aborw1 -.0674212 .0165424 -4.08 0.000 -.0523991
illw3 -.0022022 .0002809 -7.84 0.000 -.0022022

icdxcnt -.0040427 .0015628 -2.59 0.010 -.0080627
fdferw2 -.0000479 .0000208 -2.31 0.021 -.0010572
cumdose1 .0190588 .0087984 2.17 0.030 .0090215
crhrw1 .4180898 .0815523 5.13 0.000 .3399779
aborw2 -.0652722 .0273323 -2.39 0.017 -.0408494
illw1 .1611139 .0508709 3.17 0.002 .0689865
illw2 .1318337 .0396335 3.33 0.001 .1006242

icdxcnt <-
fdferw1 .0052154 .0005628 9.27 0.000 .0852154
crhrw2 .3438706 .0624207 5.51 0.000 .1287883
aborw1 -.0367259 .009011 -4.08 0.000 -.0143117
illw3 -.0011996 .000153 -7.84 0.000 -.0006015

icdxcnt -.0022022 .0008513 -2.59 0.010 -.0022022
fdferw2 -.0000261 .0000113 -2.31 0.021 -.0002887
cumdose1 .0456532 .0214625 2.13 0.033 .0108354
crhrw1 -.1645425 .0494464 -3.33 0.001 -.0670887
aborw2 -.0355553 .0162838 -2.18 0.029 -.0111571
illw1 .0877626 .0316495 2.77 0.006 .0188421
illw2 .1729375 .059496 2.91 0.004 .0661844

fdferw3 <-
fdferw1 .2455998 .0288682 8.51 0.000 .4092029
crhrw2 -.8747185 .1587821 -5.51 0.000 -.0334065
aborw1 .0934213 .0229217 4.08 0.000 .0037123
illw3 .0646733 .0082485 7.84 0.000 .0033067

icdxcnt .1187267 .0458954 2.59 0.010 .0121068
fdferw2 .0014076 .0006103 2.31 0.021 .0015874
cumdose1 2.149866 .819284 2.62 0.009 .0520313
crhrw1 2.35263 .6698573 3.51 0.000 .097815
aborw2 .1450239 .0713757 2.03 0.042 .0046405
illw1 -.1701884 .1326033 -1.28 0.199 -.0037259
illw2 -.4113862 .2384233 -1.73 0.084 -.0160545

fdferw2 <-
fdferw1 0 (no path) 0
cumdose1 2.975097 1.08866 2.73 0.006 .063845
crhrw1 2.059303 .7588785 2.71 0.007 .075918
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Table 8: Tabular summary of Direct effects hypothesis test results

Hyp # Endog.var Exog var Interp Gender Confirmation model
2 icdxcnt dose strict male none regression
2 icdxcnt dose strict female partial regression
7 icdxcnt perceived risk strict male partial regression
7 icdxcnt perceived risk strict female partial regression
2 icdxcnt dose strict male none path
7 icdxcnt perceived risk strict male partial path
2 icdxcnt dose strict female none path
7 icdxcnt perceived risk strict female none path
9 abortions dose strict female none path
13 abortions perceived risk strict female partial path

8 Recapitulation of Direct effect Hypothesis test
results

9 Recapitulation of Indirect effect hypothesis test
results

The only abortion panel in the female indirect effects table on about page 23.
We find that there are indirect paths originating with cumulative external dose
in wave 1 and in perceived risk in waves 1 and 2. Therefore, there is a basis for
examining the indirect path further. If the number of medical diagnosed illnesses
mediates the source terms and voluntary abortions, there will be indirect paths
from those sources found within the number of diagnosed illnesses (icdxcnt)
panel on page 24.

9.1 Hypothesis 17: medical illness count mediates an ex-
ternal dose abortion relationship

In the icdxcnt panel, we find significant indirect effects originating with cumu-
lative external dose in wave 1 (cumdose1 stdized β = 0.011, p = 0.033). There-
fore we have evidence of a a significant indirect path from cumulative external
dose to the count of medically diagnosed illnesses. From the abortion panel on
the previous page, we have significant path originating in the number of medi-
cally diagnosed illnesses extending to voluntary abortions icdxcnt stdized β =
−0.0003, p = 0.010). Therefore, we can conclude that there is partial support for
hypothesis 17 in the female data. This is partial because we only have evidence
of it originating in wave 1.
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9.2 Hypothesis 21 medical illness count mediates the per-
ceived risk abortion relationship

In order to find evidence for hypothesis 21, we have to follow the same procedure,
first examining the abortion panel and looking for evidence of an indirect path.
Then we have to return to the icdxcnt panel and search for evidence of significant
paths from perceived risk.

In the female indirect effects abortion panel for wave 1, we indeed find ev-
idence of a significant paths originating the hypothesized mediator - the count
of medically diagnosed illnesses (icdxcnt stdized β = −.0003, p = 0.010)..

In the female indirect effects icdxcnt panel on the next page, we find evidence
of statistically significant perceived risk indirect paths originating in waves 1
and 2. crhrw1 stdized β = −0.067, p = .001) and (crhrw2 stdized β =
−0.001, p = 0.000). Therefore, there appears to be evidence in partial support
of Hypothesis 21 stemming from two of the three waves. Hypothesis 21 is not
inconsistent with all of our female data. We have partial evidentiary support
for Hypothesis 21.

Table 9: Tabular summary of Indirect effects hypothesis test results

Hyp # Endog.var Exog var Interp Gender confirmation effects confirmed
17 abortions dose strict female partial path
19 abortions perceived risk none female partial path model
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Table 10: Files on which this analysis is based

File type Filename Gender statistical analysis

PDF report H2H7icdxcnt.pdf this report
dataset chwide16sep2012.dta latest data both
path diagram icdxcntMaleV2.pdf pdf male sem model
path diagram icdxcntFemV2.pdf pdf female sem model
AutoMet Output H2H7AutoMetrics.out OLS regression
AutoMet output abortions dose female path model
stata output abortions perceived risk female path model
stata output H2H7H9H13icd9cntAbortns.pdf dose and pcvd risk female path model
stata output H2H7H9H13icd9cntAbortns.smcl dose and pcvd risk female path model
stata output H2H7H9H13icd9cntAbortns.pdf dose and pcvd risk female path model
stata output maleIcdxcntWPv2.pdf output male path model
sembuilder icdxcntMaleV2.stsem male structural equation path model
sembuilder aborICDcntFemV2.stsem female structural equation path model
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