To: Rosemarie Foster and Tom Borak

From: Robert Yaffee

Date: 21 July 2010

Re: Preliminary linear models regarding perceived health risk of Chornobyl radiation on the part of Ukrainian residents of Kiev and Zhitomer

Files: do files= Jul16_2010.do

Output files: GeneralRadhlw3linearmodels.smcl

Data file: "C:\users\ray2\stats\stata11\research\chwk\wide\chwide15jul2010.dta"

Basic linear modeling strategy

We pursued three approaches to selecting candidate variables for model-building. The first approach was that of graphical review of functional for deviations from linearity of the relationship, the second was that of bivariate screening without graphical assistance, and the third approach was that of the general-to-specific multipath search of different routes to developing an broadly theoretically encompassing regression model advocated by Sir David F. Hendry and Hans-Martin Krolzig in their general-to-specific ("gets") modeling strategy. This approach was further developed by Dornik and Hendry into a computer program called Autometrics.

To begin, we examine the relationship between our endogenous variable and candidate explanatory variables to detect nonlinear patterns. If possible, we attempt transformations which will render these relationships linear and amenable to conventional statistical testing. If the relationships are not intrinsically linear, we may deal with them by means of nonlinear or nonparametric approaches later. For the time being, we are trying to model linear relationships. We developed a set of linear models for the whole sample and for gender-specific segments of the sample. The reason for doing so is that the biological differences might predispose one sex from experiencing different effects than the other would Therefore, we began with a full-general model, and trimmed out the nonsignificant effects to arrive at a pruned or trimmed model This was done for each of the three sets of data, leaving us with six basic models.

The trimming was performed on the basis of nonsignificance of variables. Nonsignificance was determined as anything with significance level higher than 0.10. We decided that this was the appropriate cut-off level in general because the residuals of our sample were frequently found to be nonnormal based on the Shapiro-Wilk and Kolmogorov-Smirnov tests. Therefore, we decided to be more liberal in our estimation of what may be of interest. We indicate levels of significance greater than 0.05 but less than 0.10 by a # sign. Conventional applications of asterisks are used otherwise to

indicate statistical significance. As a matter of convention, when the data are presented in the tables or sentences below, we round upward for the last figure to the right of the decimal point.

Following Hendry and Krolzig (1999), we take these six models and assign a value for each time a variable is statistically significant. By summing these values, the variable is given a reliability score. We then sort the variables according to the reliability score to obtain a sense of robustness of the variables comprising the model. Because the general to specific methodology of Hendry and Richard (1982) proceeds along a multipath tree-search from the general unrestricted model down each possible route of adding variables to the model, until a specification assumption is violated, at which point the model terminates. The models are built with a view toward encompassing theory. The more encompassing the model the better, as long as assumptions of the model are met. Model specification proceeds until any competing models are tested against one another. Attempts to combine them are made and the best fitting model that encompasses the most theory is selected. In case of ties, the Schwartz Bayesian criterion is used as a tie-breaker.

George E. P. Box once was reported to have said that "all models are wrong, but some are useful." We will test each of our models for regression specification requirements of residual normality, homogeneity of variance, independence of observations and identical distributions, dearth of multicollinearity, lack of outlier distortion, and for lack of omitted variable bias. If there are too many outliers, we shall endeavor to use an outlier down weighting algorithm to fit the model. If there is heteroskedasticity of the residuals, we can employ robust sandwich variance estimators to find the correct standard errors. From this analysis, we hope to gain a sense of which models are reliable and robust, as well as which are more fragile than the others.

In the second phase of the analysis, we take the linear models and test for interactions among the variables following any transformation of them that may have been applied. We will examine the nonlinear portions of the model. We will sequentially test these interactions to determine which should be included in the model. Once all the possible interactions have been included, we will simultaneous test the interactions to be sure that these are worthy of retention with a simultaneous test by which all variables and interactions are tested for retention within the model at the same level of power. This is the test of sufficiency to determine which variables need to be retained in the model. Then we will discuss the interactions and graph them to illustrate the nature of their interactions.

The Interim sample

At this stage of the data collection, our sample consists of 281 cases, approximately 29.54% (83) of which consist of males and the remainder of females. Seventy-five and 44/100 percent of the sample lives in the Kiev Oblast. The remainder resides in Zhitomer. The sample consists of fairly well-educated people, 39.5% of whom have a specialists or master's degree. About 38.08% of them have a technical degree. Only one did not finish high school. Four had doctoral degrees of one kind or another.

What factors explain perceived health risk from the Chornobyl radiation?

The full model for both men and women has for its endogenous variable, the perceived health risk from the Chornobyl radiation. The question asked of respondents living in the Ukraine was "In terms of percent, how much of your health has been affected by the Chornobyl radiation?" The answers lead to the development of a simple model consisting of the variables displayed in Table one on the next page.

Males and Females together: Model 1

The first regression model is has a lot of explanatory power. The R² for the model is 0.7934 and when that is adjusted for the number of variables in the model, the adjusted R² is 0.769. Not all of these variables are statistically significant. We know that the biological systems are have age and gender differences. Therefore, whether age or gender is significant or not, we include these variables in the model to control for such differences. In this way, we hope to control for the basic differences between them. At this juncture we only include first order terms. But the model we develop does explain much of the systematic variation involved. We address these risk factors in terms of their beta weights. Perhaps the strongest association with this endogenous variable is the amount of family health that has been affected by the radiation. The relationship is positive so that the more people believe that their health has been affected, the more they believe that their family's health has been affected. This is not surprising. The second most powerful relationship seems to be that of drinking liquor during wave two is about the second most powerful influence. The more respondents believe that their health was affected, the more they drank hard liquor during between 1987 and 1996. Similarly, energy level has the same positive relationship with the belief in the amount of their health that they think was selected. Perhaps the immediate threat raised the adrenaline to deal with the jeopardy in their environment. Perhaps the third most powerful influence is that of the energy level. The next most powerful influence is that of the amount of pollution of the air and water by the Chornobyl radiation. To the extent that was polluted, people tend to think that their health was proportionally compromised. Next in importance is the natural log of the cumulative external dose of CS137 that they got from external sources. We use this transformation to render the variable amenable to linear statistical modeling. The greater the does, the more they think that their health has been affected. The next more important is the stresses and hassles to their health is directly related to the amount that they believe their health has been affected. Then the next most important fact seems to be the personal intrusion to their interests and hobbies. Females seem to believe that their health was affected somewhat more than the men did. Next in importance is the number of separations related to the amount of health affected by this radiation. This too was a positive relationship. Most of these relationships seem reasonable and not counterintuitive.

Some of the relationships were inverse rather than direct in their association. Age was one of these, the older the respondent was, and the less he or she thought that their health was affected. Visits to the homeopath were related also. The more the respondent thought that their health was affected, the less

the person thought his health was related. The more children the respondent had, the less he or she thought that the relationship wax so. Next was the amount of stresses or hassles on the job, which is inversely related to the amount of health perceived to have been affected. The amount of depression linked to the Chornobyl radiation was next. It appears that the more the person thought his health was affected by the Chornobyl radiation, the less depressed him or she was. This may be a cause attributable to others from which misery found comforting that others were suffering from it too. Then came those who drank hard liquor around the time of the accident during the first wave, the less they thought their health was affected the more they drank hard liquor around the time of the accident and the more they drink hard liquor during the last wave. This latter relationship is perhaps one of the strongest inverse relationships we detected so far.

Table 1 Key variables in preliminary models

radh1w3	byte %8.0g		how much believed personal health is affected by radiation now
age	byte %8.0g		Age of respondent in years
sex	float %9.0g	SX	gender of respindint
childw3	byte %8.0g		number of children now
radfmw3	byte %8.0g		how much believed family health is affected by radiation now
airw1	byte %8.0g		consider hazardous (in percent) – air and water pollution in 1986
airw3	bvte %8.0g		consider hazardous (in percent) – air and water pollution . NOW
ecorwl	byte %8.0g		consider hazardous (in percent) – economic problems in 1986
iniselfr	float %9.00	dum	were u injured because of Chornobyl acc in 1986?
iniothr	float %9.0g	ini	Was anyone u know injured by Chornobyl accident?
enley	double %9.0g		energy level (el)
linut	byte %8.0g		number of snirits ner week in 1976–1986
liow2	byte %8.0g		number of spirits per week in 197-1906
liguz	byte %8.0g		number of spirits per week in 1907-1990
boomut	int %8.0g		number of spirits per week in 1997-now
nospw1	111L %0.0g		" number of days per year as a patient in a trinit for medical condition in 1970-
VISNDUM	byte %8.0g		number of visits per year to a nomeopath for a physical condition in 1976-1986
aepress	byte %8.0g	1.00.	aepression
hp21nthob	float %9.0g	hp2fmt	health causing prb with interests & hobbles
phychot	byte %8.0g		
sepaw3	byte %8.0g		Total number of separations, experienced in time period 1996–NOW
movew2	byte %8.0g		Total number of moves, experienced in time period 1987–1996
shjobw2	byte %8.0g		Percentage of strains and hassles related to job, 1996
shh1w1	byte %8.0g		Percentage of strains and hassles related to health, 1986
1cumdosew3	float %9.0g		Ln(cumdošew3)

* coding check

summarize radhlw3 age sex childw3 radfmw3 airw1 airw3 ecprw1 injselfr injothr enlev liqw1 liqw2 liqw3 hospw1 ///
vishphw1 depress hp2inthob phychot ///
sepaw3 movew2 shjobw2 shhlw1 lcumdosew3

Max	Min	Std. Dev.	Mean	Obs	Variable
100 84 1 4 100	0 28 0 0 0	34.20885 11.95514 .4570245 .82105 32.44776	60.09701 50.84342 .7046263 1.427046 71.5941	268 281 281 281 281 271	radhlw3 age sex childw3 radfmw3
100 100 100 1 1	0 0 0 0	32. 35757 38. 49225 32. 01652 . 4674184 . 3463441	63.79259 46.15523 31.72174 .6797153 .86121	270 277 230 281 281	airw1 airw3 ecprw1 injselfr injothr
100 10 10 25 200	0 0 0 0	34.29539 2.167221 2.1187 2.241178 16.60617	29.22135 1.081851 1.298932 1.096085 5.096429	281 281 281 281 281 280	enlev liqw1 liqw2 liqw3 hospw1
10 21 1 18 1	0 0 0 0	. 9954484 3. 667355 . 3425806 2. 76793 . 2104296	.1688312 3.537367 .1352313 2.341637 .0462633	154 281 281 281 281 281	vishphw1 depress hp2inthob phychot sepaw3
3 100 100 10.18873	0 0 3.786925	.4071676 38.31329 29.58824 .8780264	.1530249 40.80427 24.91459 6.305894	281 281 281 281	movew2 shjobw2 shhlw1 lcumdosew3

Source	SS	df	MS		Number of obs	=	153
Model Residual	118442.795 30838.042	16 74 136 22	402.67466 26.750309		Prob > F R-squared	=	0.0000
Total	149280.837	152 98	32.110767		Root MSE	=	15.058
radh1w3	Coef.	Std. Err	. t	P> t			Beta
age sex childw3 radfmw3 airw1 enlev liqw1 liqw2 liqw3 vishphw1 depress hp2inthob sepaw3 shjobw2 shhlw1 lcumdosew3	0645008 3.428334 -3.580692 .7334324 .1377916 .1466435 -2.314402 2.676547 -2.335569 -1.767211 9206115 13.80775 6.923541 0995534 .141008 4.792278	.1435428 3.368783 1.81387 .0454715 .0369565 .0437756 .84321 .8983654 .6457014 1.280603 .3548281 4.861413 6.457443 .0421508 .0504808 1.577076	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.654 0.311 0.050 0.000 0.001 0.007 0.003 0.000 0.170 0.011 0.005 0.286 0.020 0.006 0.003			0222962 0512094 0864127 7685719 1549096 1558308 1665128 2027088 1963929 0563131 1206354 1188435 0430244 .112795 1367251 1370676
_cons	-20.29538	11.0/144	-2.21	0.028			-

Table 2 Full model for males and females

This system of relationships is subject to question. Many would want to which of the assumptions of this model hold and which violated and to what extent. If they are violated, how should we alter our view of these relationships to accommodate such a specification test failure? Should we consider altering our model to handle these violations? First, let us examine the fulfillment of the model assumptions.

Table 3 Specification tests for Both Male and Female Full Model									
Assumption	Test	X ² , f, F, or t	p-value	violation					
Residual normality	Shapiro-Wilk test	3.816	0.000	yes					
	Kolmogorov-	25.16	0.000						
	Smirnov test								
Residual	Breusch –Pagan	1.67	0.2096	No					
homoskedasticity	/Cook Weisburg								
	test								
No outliers	Standardized	1 negative outlier		yes					
	residuals > 3.5								
No omitted	Ramsey reset test	4.83	0.0032	Yes					
variables									
No	VIF < 10	Mean VIF=14.56		yes					
multicollinearity									

As a regression model, there are specific conditions which must be fulfilled for us to have complete confidence in these findings.

How can we manage these specification violations? We can loosen up our significance criteria to compensate for violation of the residual normality by noting when things are borderline or almost significant by designating them with a pound sign if they are 0.10 in probability. We do not have to use weighted least squares or sandwich variance estimators to handle heteroskedasticity for this model. We could use an outlier downweighting robust regression to deal with the single negative outlier, but our sample size is large enough to diminish the relative effect of this influence on the overall model. When we model our interactions we should attempt to model polynomial versions of the variables to handle the specification error suggested by the Ramsey Reset test. Probably the best solution is to obtain empirical standard errors by bootstrapping and using the bootstrapped model as empirical validation of the full and trimmed models.

We bootstrap the model 998 times and display those results in Table two. We cluster by id owing to the complex sample being applied. In the process, we apply bias correction and acceleration to correct for the asymmetry and skew. The bootstrap works best when there are no outliers in the distribution. With only one negative outlier, it is quite likely that our results will work out nicely. Indeed, we discover that this consistent method accurately replicates the results displayed in Table two. As the sample size (number of bootstrap replication increases) the statistic approximates the population parameter. It has as much power as indicated by the almost identical R² results. The parameter estimates are identical but the bootstrap standard errors vary a little from those generated by our regression model. Nevertheless, the results are proportional and supportive of the claim to validation of our model.

Table 4 Bootstrap Validation

Linear regress	sion	(R	eplicatio	Number Replica Wald ch Prob > R-squar Adj R-s Root MS	of obs itions ii2(16) chi2 ed iquared iE ion 153 clust	= 153 = 998 = 678.51 = 0.0000 = 0.7934 = 0.7691 = 15.0582 ters in id)
radh1w3	Observed Coef.	Bootstrap Std. Err.	z	P> z	Norma [95% Conf.	l-based Interval]
age sex childw3 radfmw3 airw1 enlev liqw1 liqw2 liqw3 vishphw1 depress hp2inthob sepaw3 shjobw2 shhlw1 lcumdosew3 cons	0645008 3.428334 -3.580692 .7334324 .1377916 .1466435 -2.314402 2.676547 -2.335569 -1.767211 9206115 13.80775 6.923541 0995534 .141008 4.792278 -26.29338	.1605658 3.038835 1.7104 .0432227 .0380811 .0499217 1.222597 .8979844 .7475209 2.462538 .3616268 5.112128 11.90627 .0425842 .0481963 1.657119 12.1052	-0.40 1.13 -2.09 16.97 3.62 2.94 -1.89 2.98 -3.12 -0.72 -2.55 2.70 0.58 -2.34 2.93 2.89 -2.17	0.688 0.259 0.036 0.000 0.003 0.058 0.003 0.002 0.473 0.011 0.007 0.561 0.019 0.003 0.004 0.030	3792039 -2. 527673 -6. 933014 . 6487175 . 0631539 . 0487988 -4. 710648 . 9165296 -3. 800683 -6. 593696 -1. 629387 3. 788161 -16. 41232 1830169 . 0465449 1. 544384 -50. 01914	.2502024 9.384341 22837 .8181473 .2124293 .2444883 .0818444 4.436564 8704549 3.059274 211836 23.82733 30.2594 0160899 .2354711 8.040172 -2.567624

Trimmed Model for both males and females

Before proceeding to our gender-specific models, we will re-estimate the model by trimming out the nonsignificant effects but not those that are borderline and then we will re-evaluate the model. After trimming out those variables that are not statistically significant, we obtain a more parsimonious understanding of the risk factors related to perceived Chornobyl radiation health risk on the part of our interim sample. Nevertheless, the model remains powerful with an $R^2 = 0.71$ and when we adjust for the number of degrees of freedom consumed by the number of variables in our model, we still have about the same goodness of fit (adjusted R^2 =.71). For a first pass, the model in Table four has plenty of explanatory appeal.

We will briefly describe the model in terms of decreasing beta weights. Notwithstanding their statistical significance, age and gender remain in the model to account for normal lifecycle effects. Both

variables are nonsignificanty related to the Chornobyl perceived heath risk. Apart from age and gender, all other seven variables are highly statistically significant at 0.5 levels.

Source Model Residual	55 212860. 597 83885. 2011	df 9 236 247 339	M5 51.1774 616199		Number of obs F(9, 247) Prob > F R-squared	$= 257 \\ = 69.64 \\ = 0.0000 \\ = 0.7173 \\ = 0.7070$
Total	296745.798	256 1159	9.16327		Root MSE	= 0.7070 = 18.429
radh1w3	Coef.	Std. Err.	t	P> t		Beta
age sex radfmw3 airw1 liqw1 hp2inthob shjobw2 shhlw1 lcumdosew3 _cons	0708767 4350829 .8378355 .1357923 -2.730379 10.99926 1107804 .0930175 4.720468 -30.13108	.1177613 3.050774 .039044 .0365322 .679945 3.730547 .0352072 .0429941 1.453429 10.51535	-0.60 -0.14 21.46 3.72 -4.02 2.95 -3.15 2.16 3.25 -2.87	0.548 0.887 0.000 0.000 0.000 0.004 0.002 0.031 0.001 0.005		0244775 0058433 .7984541 .1294581 1777916 .1110236 1230737 .0808609 .1229101

Table 4 Trimmed Model	both males an	d females
-----------------------	---------------	-----------

In order of decreasing relative influence, the explanatory variables are amount of family health affected by the Chornobyl radiation, the amount of pollution of the air and water, the computed external effective dose of CS137 accumulated over the years, its interference with interests and hobbies, the stresses and hassles to ones heath, the gender effect, the age effect, the stresses and hassles associated with the job during wave two and the amount of hard liquor consumption. There were direct relationships between the amount of health affected and the amount of family health affected, the amount of air and water polluted, the actual cumulative external dose, the interference with hobbies and interests, and the amount of stresses and hassles with the job. The other relationships were inverse ones.

To evaluate this model, we can refer to Table five. We find that this model fails a number of the specification tests. Indeed, apart from there being no outlier s for this model, all other specifications are violated. One solution is to use robust variance estimators here, which we will do later. This will not change our parameter estimates, but will widen the standard errors somewhat. We need to loosen up on our significance criteria again, allowing borderline cases to be deemed as possibly significant. With no outlier problems, we need not run an outlier downweighting regression. Even if we loosen up on these criteria, we explain about 71% of the variance of the endogenous variable with these few explanatory variables before considering interaction terms.

Table5 Specification tests for Both Male and Female Trimmed Model									
Assumption	Test	X ² , f, F, or t	p-value	violation					
Residual normality	Shapiro-Wilk test	W=.845 Z=6.60	0.0000	yes					
	Kolmogorov-								
	Smirnov test	64.92	0.0000						
Residual	Breusch –Pagan	0.62	0.4317	no					
homoskedasticity	/Cook Weisburg								
	test								
No outliers	Standardized	Not applicable	none	no					
	residuals > 3.5								
No omitted	Ramsey reset test	F(3, 244) = 5.40	0.000	yes					
variables									
No	VIF < 10	Mean VIF	23.04	yes					
multicollinearity									

Bootstrap validation of Trimmed model for both males and females

We are able to replicate the results of the previous model by reproducing the empirical standard errors from a bootstrap in Table 5 below. The parameter estimates again are identical. Although the standard errors are not identical, they are close enough so that this serves as validation of the parameter estimates of the model.

Table 6: Bootstrap validation of the trimmed model for males and females

_inear regres:	sion	(R	eplicatio	Number Replica Wald ch Prob > R-squar Adj R-s Root MS	of obs itions ii2(9) = chi2 = red = quared = 5E = l on 257 clust	= 257 = 1000 = 962.80 = 0.0000 = 0.7173 = 0.7070 = 18.4287 ters in id)
radhlw3	Observed Coef.	Bootstrap Std. Err.	z	P> z	Norma [95% Conf	l-based Interval]
age sex radfmw3 airw1 liqw1 hp2inthob shjobw2 shhlw1 lcumdosew3 _cons	0708767 4350829 .8378355 .1357923 -2.730379 10.99926 1107804 .0930175 4.720468 -30.13108	.1222838 2.770746 .0354566 .0365666 .8722664 3.75268 .0391823 .0405443 1.525557 10.59084	-0.58 -0.16 23.63 3.71 -3.13 2.93 -2.83 2.29 3.09 -2.85	0.562 0.875 0.000 0.000 0.002 0.003 0.005 0.022 0.002 0.002	3105486 -5. 865645 .7683417 .0641231 -4. 43999 3. 644143 1875763 .013552 1. 730431 -50. 88874	.1687952 4.995479 .9073293 .2074614 -1.020768 18.35438 0339845 .1724829 7.710506 -9.373411

Although we find that the standard errors vary a little from the original output, the parameter estimates are replicated as well as the omnibus goodness of fit statistics. We find this validation of the results and accept this output as support for faith in our findings. That we were able to support our full and trimmed model with bootstrap validation with empirical standard errors lends support to our approach.

Gender-specific Regression Models

By splitting the sample into two segments, we provide an opportunity for additional reliability testing. We save a degree of freedom by not having to include gender in the model, but until our sample size increases, we still have low power to assess the male subpopulation. The question arises whether we can obtain as powerful explanatory models as we did with the general population.

We begin our examination of the full male model. The answer to that question appears to be in the affirmative. The explanatory power of this model reaches and $R^2 = 0.872$ with an adjusted $R^2 = 0.814$. This model is bereft of a lot of nuisance variables. However, this model includes most of the variables we have seen in the earlier models.

However, there is one change that it noteworthy and we will tender some plausible explanations for it. The natural log of the computed cumulative external dose has lost its statistical significance. This loss is suspicious and may be due to the artifact of a temporary loss of power of this model to effects of a medium to small size. It is possible that the listwise deletion, used before we begin the multiple imputations, has engendered this loss. The model has 15 variables in it and a lot of data has dropped out due to the listwise deletion being used until we commence with multiple imputation to replace missing values. The corresponding loss of power to this model might result in a lack of statistical significance. We should be able to test this model with a bootstrap validation as well.

Table 7 Full Male Model

scorage	uispiay	varue	-				
type	format	label	· ۱	variable	label		
byte byte byte byte byte byte byte byte	%8.0g %8.0g %8.0g %8.0g %9.0g %9.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g %8.0g	dum inj		how much Age of r number o how much consider were u i energy 1 consider was anyo number o number o number o number o 1976-1 Total nu Total nu Ln(cumdo	believed person respondent in yea f children now believed family hazardous (in p njured because o evel (el) hazardous (in p me u know injure f spirits per we f spirits per yea 986 mber of separati mber of moves, e sew3)	al health rs health i: ercent) - f Chornoby ercent) - d by Chorn ek in 197 ek in 198 ek in 199 r to a ho ons, expe xperience	is affected by air and water yl acc in 1986? economic probl nobyl accident? 6-1986 7-1996 7-now meopath for a p rienced in time d in time perio
hlw3 age movew2 lc	childw3 ra umdosew3 i	dfmw3 a f sex =	irw1 in = 0, be	jselfr e ta	nlev ecprw1 injo	thr liqw1	liqw2 liqw3 vi
s	s df	Ν	15		Number of obs =	49	
42390. 6235.6	8425 15 8812 33	2826.0 188.9	05617 50246		Prob > F = R-squared =	0.0000	
48626.	5306 48	1013.0	05272		Root MSE =	13.746	
Co	ef. Std.	Err.	t	P> t		Beta	
-6.791 .7955 .1877 17.05 .2652 2113 -11.88 -3.247 1.564 -2.025 -14.78 -26.3 -9.262 1.133	.034 3.07 .687 .078 .687 .078 .465 5.41 .716 .075 .004 .076 .774 6.53 .688 1.03 .941 .94 .951 .681 .002 4.99 .187 11.3 .259 4.63 .064 3.28	8787 5506 55092 5575 7442 3644 7681 8611 4816 0037 6491 6104 1316 4673	-2.21 10.13 2.70 3.15 3.50 -2.77 -1.82 -3.13 1.66 -2.97 -2.96 -2.32 -2.00 0.34	0.034 0.000 0.011 0.003 0.001 0.009 0.078 0.004 0.107 0.005 0.006 0.027 0.054 0.732	- - - - - -	.1716361 .8405813 .2039689 .2706348 .2579531 .2130265 .1520888 .3286789 .1573163 .2596001 .1990134 .1653079 145255 .0305176	
	byte byte byte byte byte byte byte byte	type format byte %8.0g byte %8.0g float %9.0g hlw3 age childw3 ra movew2 lcumdosew3 i SS df 42390.8425 15 6235.68812 33 48626.5306 48 coef. Std. .1310031 .245 -6.791034 3.07 .7955687 .078 .1877148 .069 17.05465 5.41 .2652716 .075 2113004 .076 -11.88774 6.53 -3.247168 1.03 1.564941 .94 -2.025951 .681 -14.78002 4.99 -26.3187 11.3 -9.262259 4.63 1.133064 3.28	storage orspray varue type format label byte %8.0g byte %8.0g byte %8.0g byte %8.0g byte %8.0g byte %8.0g byte %9.0g dum double %9.0g inj byte %8.0g byte %8.0g byte %8.0g byte %8.0g byte %8.0g byte %8.0g <t< th=""><th>storage orspray varue type format label byte %8.0g byte %8.0g <t< th=""><th>Stor age Offspray Variation type format label variable byte %8.0g Age of r byte %8.0g number of byte %8.0g cornsider byte %8.0g cornsider byte %8.0g cornsider byte %8.0g cornsider byte %8.0g consider byte %8.0g rumber of byte %8.0g number of</th><th>Storage Orspray Variable Variable Variable Jabel Variable Jabel byte format label variable label variable label byte %8.0g Age of respondent in yea number of children now byte %8.0g Age of respondent in yea byte %8.0g consider hazardous (in p byte %8.0g consider hazardous (in p byte %8.0g number of spirits per we byte %8.0g rotal number of spirits per we byte %8.0g rotal number of moves, e float %9.0g if sex 0, beta float %9.0g if sex 0, beta float %9.0g number of separati prob > F fc235.68812 33 188.960246 Root MSE Root MSE fcoef.</th></t<><th>Storage Orspray Varue type format label variable label byte %8.0g Age of respondent in years byte %8.0g number of children now byte %8.0g how much believed family health in byte %8.0g orsider hazardous (in percent) - byte %8.0g energy level (el) byte %8.0g consider hazardous (in percent) - byte %8.0g energy level (el) byte %8.0g number of spirits per week in 199 byte %8.0g number of spirits per week in 199 byte %8.0g number of spirits per week in 199 byte %8.0g number of separations, expe byte %8.0g number of separations, expe byte %8.0g number of obs = 49 f(1at %9.0g in sequered e.0000 false 11013.05272 Prob > F e.0000 false 1310031 .2452847 0.53 0.597 .0477863 -7.95687 .0785506 10.13 0.000 .8405813</th></th></t<>	storage orspray varue type format label byte %8.0g byte %8.0g <t< th=""><th>Stor age Offspray Variation type format label variable byte %8.0g Age of r byte %8.0g number of byte %8.0g cornsider byte %8.0g cornsider byte %8.0g cornsider byte %8.0g cornsider byte %8.0g consider byte %8.0g rumber of byte %8.0g number of</th><th>Storage Orspray Variable Variable Variable Jabel Variable Jabel byte format label variable label variable label byte %8.0g Age of respondent in yea number of children now byte %8.0g Age of respondent in yea byte %8.0g consider hazardous (in p byte %8.0g consider hazardous (in p byte %8.0g number of spirits per we byte %8.0g rotal number of spirits per we byte %8.0g rotal number of moves, e float %9.0g if sex 0, beta float %9.0g if sex 0, beta float %9.0g number of separati prob > F fc235.68812 33 188.960246 Root MSE Root MSE fcoef.</th></t<> <th>Storage Orspray Varue type format label variable label byte %8.0g Age of respondent in years byte %8.0g number of children now byte %8.0g how much believed family health in byte %8.0g orsider hazardous (in percent) - byte %8.0g energy level (el) byte %8.0g consider hazardous (in percent) - byte %8.0g energy level (el) byte %8.0g number of spirits per week in 199 byte %8.0g number of spirits per week in 199 byte %8.0g number of spirits per week in 199 byte %8.0g number of separations, expe byte %8.0g number of separations, expe byte %8.0g number of obs = 49 f(1at %9.0g in sequered e.0000 false 11013.05272 Prob > F e.0000 false 1310031 .2452847 0.53 0.597 .0477863 -7.95687 .0785506 10.13 0.000 .8405813</th>	Stor age Offspray Variation type format label variable byte %8.0g Age of r byte %8.0g number of byte %8.0g cornsider byte %8.0g cornsider byte %8.0g cornsider byte %8.0g cornsider byte %8.0g consider byte %8.0g rumber of byte %8.0g number of	Storage Orspray Variable Variable Variable Jabel Variable Jabel byte format label variable label variable label byte %8.0g Age of respondent in yea number of children now byte %8.0g Age of respondent in yea byte %8.0g consider hazardous (in p byte %8.0g consider hazardous (in p byte %8.0g number of spirits per we byte %8.0g rotal number of spirits per we byte %8.0g rotal number of moves, e float %9.0g if sex 0, beta float %9.0g if sex 0, beta float %9.0g number of separati prob > F fc235.68812 33 188.960246 Root MSE Root MSE fcoef.	Storage Orspray Varue type format label variable label byte %8.0g Age of respondent in years byte %8.0g number of children now byte %8.0g how much believed family health in byte %8.0g orsider hazardous (in percent) - byte %8.0g energy level (el) byte %8.0g consider hazardous (in percent) - byte %8.0g energy level (el) byte %8.0g number of spirits per week in 199 byte %8.0g number of spirits per week in 199 byte %8.0g number of spirits per week in 199 byte %8.0g number of separations, expe byte %8.0g number of separations, expe byte %8.0g number of obs = 49 f(1at %9.0g in sequered e.0000 false 11013.05272 Prob > F e.0000 false 1310031 .2452847 0.53 0.597 .0477863 -7.95687 .0785506 10.13 0.000 .8405813

However, let us examine the extent to which the model assumptions are fulfilled. From Table eight, we see that the homoskedasticity assumption is fulfilled here, but the normality assumption is not, even though there is no excess kurtosis or skewness. Most of the assumptions are fulfilled. Because there are no distorting outliers in the residual distribution, we can either relax our hypothesis testing criteria a little or be more assured with a bias corrected and accelerated bootstrap. We decide to select the latter option.

Table 8 Specification tests for Full Male Model									
Assumption	Test	X ² , f, F, or t	p-value	violation					
Residual normality	Shapiro-Wilk test	V=18.325	0.0000	yes					
	Kolmogorov-	Z=6.6							
	Smirnov test								
		64.92	0.0000						
Residual	Breusch –Pagan	$X^{2}(1) = 0.62$	0.4328	no					
homoskedasticity	/Cook Weisburg								
	test								
No outliers	Standardized	Not applicable	none	no					
	residuals > 3.5								
No omitted	Ramsey reset test	F(3, 30) = 1.57	0.2166	no					
variables									
No	VIF < 10	Mean VIF	20.34	yes					
multicollinearity									

Although the Ramsey reset test indicates a lack of specification error owing to polynomial transformations, there may be other variables inversely related to the natural log of cumulative dose that are inadvertently excluded from the model. This may not be likely given the adjusted R² of the model. However, it is still possible. Owing to listwise deletion, the sample size has been reduced to 49. The fact that this natural log of cumulative external effective dose of CS137 is negatively correlated with 10 of the 15 other parameter estimates in the model could potentially suppress its significance if these correlations were sufficiently large. Yet the largest in negative magnitude is only -0.262. Such specification error could suppress the significance of the natural log of cumulative external dose of CS137. We might want to run a simulation to test whether this could be the case. For the moment, this phenomenon may be an example of something we should investigate but that we do not yet know. If we discover it to be so, then that would explain this loss of statistical significance.

Bootstrap replication brings the consistency of the estimator to bear on the problem, for which reason we can accept the bootstrap as a validation of the former model in Table Six. We compare our clustered bootstrapped results in Table ten to those we obtained in Table seven. Of course, the bootstrap standard errors vary somewhat due to the random resampling with replacement but not enough to say that validation has not occurred. The variation is sufficiently small so that our results appear to be validated.

Perhaps one way to begin the testing is to trim the model. If it is the plethora of small negative correlations that are reducing the significance of this parameter, we should see what happens when we

are able to trim some of these from the model. If the significance of this parameter re-emerges, then we have further evidence of the omitted variable bias that could engender a spurious nonsignificance. Therefore, we now turn our attention to the trimmed male model in Table 11.

Linear regres:	sion			Number Replica Wald ch Prob > R-squar Adj R-s Root MS	of obs = tions = i2(15) = chi2 = ed = quared = E =	= 49 = 1035 = 395.33 = 0.0000 = 0.8718 = 0.8135 = 13.7463
		0	керпсас	ions base	a on 49 clus	Lers in id)
radh1w3	Observed Coef.	Bootstrap Std. Err.	z	P> z	Norma [95% Conf.	l-based Interval]
age childw3 radfmw3 airw1 injselfr enlev ecprw1 injothr liqw1 liqw2 liqw3 vishphw1 sepaw3	.1310031 -6.791034 .7955687 .1877148 17.05465 .2652716 2113004 -11.88774 -3.247168 1.564941 -2.025951 -14.78002 -26.3187	.2414022 3.598476 .0927857 .0773054 6.219577 .0993308 .0892625 8.235777 1.286178 1.166375 .8515801 2.231581 16.20863	0.54 -1.89 8.57 2.43 2.74 2.67 -2.37 -1.44 -2.52 1.34 -2.38 -6.62 -1.62	0.587 0.059 0.000 0.015 0.006 0.008 0.018 0.018 0.012 0.149 0.012 0.180 0.017 0.007 0.000 0.104	3421366 -13. 84392 .6137121 .0361989 4. 864501 .0705868 3862517 -28.02957 -5.76803 721114 -3.695018 -19.15384 -58.08704	.6041428 .2618486 .9774252 .3392306 29.24479 .4599563 0363491 4.254082 7263066 3.850994 3568849 -10.4062 5.449637
movew2 lcumdosew3 _cons	-20.3187 -9.262259 1.133064 -2.294297	6. 089893 3. 241864 26. 28609	-1. 62 -1. 52 0. 35 -0. 09	0.104 0.128 0.727 0.930	-38.08704 -21.19823 -5.220873 -53.81409	2.673713 7.487001 49.2255

Table 10	Bootstrap	validation	of the	full	male mo	del

The Trimmed Male Model

The trimmed male model details are presented in Table 11. The number of parameters in the model is reduced from 15 in Table 10 to nine in Table 11. With only 49 observations that leaves only 37 degrees of freedom for testing. This is not a very large file and although the reduction of the number of explanatory variables leaves more power with which to test, it is not a great improvement in power. If we examine the square of the natural log of the cumulative external dose of CS137 sustained, we observe that the significance level tends toward more significance, but at p=0.221, we cannot say that it statistically significant. However, the reduction of the p-value to 0.221 may reflect the improved power of a still weak model. By the time we obtain our full sample, we hope to have enough male observations such that our assessments will be more definitive. At this juncture, we can only proffer these as interim results awaiting additional power to be obtained from a larger sample size of males.

However, we need to examine the differences between the full and trimmed model to observe what robustly remains and what does not.

Source Model Residual	SS 39913.1689 8713.36175	df 11 362 37 235.	MS 3628.4699 235.496264		Number of obs = 49 F(11, 37) = 15.41 Prob > F = 0.0000 R-squared = 0.8208
Total	48626.5306	48 1013	. 05272		Root MSE = 15.346
radh1w3	Coef.	Std. Err.	t	P> t	Beta
age childw3 radfmw3 enlev injselfr liqw1 igw3 vishphw1 sepaw3 movew2 cumdosew3sq _cons	.2128123 -7.987085 .852851 .2073325 12.50024 -2.853126 -1.249931 -15.88501 -28.57907 -10.09214 .363855 -16.0379	.2704167 3.290603 .0833552 .0813314 5.083299 1.061364 .6386906 5.403158 12.25482 4.95614 .2921443 17.50836	0.79 -2.43 10.23 2.55 2.46 -2.69 -1.96 -2.94 -2.33 -2.04 1.25 -0.92	0.436 0.020 0.000 0.015 0.019 0.011 0.058 0.006 0.025 0.049 0.221 0.366	.0776281 201865 .9011046 .2016125 .1983624 2887939 1601628 213892 1795053 1582696 .1162601

Table 11 Trimmed male model

The more robust risk factors are those phenomena that retain their significance and sign in both models. The amount of family health affected remains directly associated with the amount of personal health affected by the radiation. Energy level remains positively significant in both models. Risk may raise energy level for some time. Self-injury as a result of Chornobyl is positively significant in both models. It appears that people were rushed around and in a hurry, which may have results in various kinds of injury in the commotion. Visits to the homeopaths are inversely significant in both male models. Under times of crisis and commotion, homeopathic visits seem to be inversely related to the perceived health risk here. Inverse significant relationships between consumption of hard liquor and the perceived heath risk remains in wave one.

The changes from the full to the trimmed model are several. A number of significances emerged. One of them was the number of children the respondent has is a variable that was not statistically significant in the full model but is statistically significant in the trimmed model among the men in the sample. The total number of moves from one place to another was not significant in the full model but emerged as significant in the trimmed model. The number of marital separations became significant in the trimmed model. In wave three, hard liquor consumption became almost significant from significant. Injury to others dropped from significance in the trimmed model. The basis for these differences may follow from a difference in statistical power or from a transformation of the situation.

In this model, we employed the square of the natural log of the cumulative external effective dose of CS 137 because it was more significantly related to the perceived risk perception of Chornobyl radiation. In this model that transformation provided a better link between the endogenous and exogenous variable under consideration. To appreciate the validity of this model, we need to review the specification requirements. That may give us an indication of where the model weakness may reside. Then, we may still wish to resort to bootstrap validation for more data. Therefore, we resort to this now in hopes of providing more information about what is reliable and what is fragile in these models.

From a review of the model assumptions in Table twelve it is clear that there are more violations than there are fulfillments. Homoskedasticity is not violated so the confidence intervals may be estimated but the residual distribution is nonnormal. This may be due to the presence of outliers that could distort the distribution. We will examine this situation in greater detail because the presence of bad influence from outliers can undermine the coverage of a percentile or a t bootstrap with small sample sizes, even though we use bias correction and acceleration to compensate for the bias that could follow from such bootstraps(Efron and Tibshirani, 1993). In this case we examine the Cook's D as a measure of the adversity of the influence of these outlying observations.

Table 12 Specification tests for the trimmed male model							
Assumption	Test	X ² , f, F, t, or z	p-value	violation			
Residual normality	Shapiro-Wilk test	Z=6.963	0.0000	yes			
	Kolmogorov-	Adj X ²⁼ 66.74					
	Smirnov test						
			0.0000				
Residual	Breusch –Pagan	$X^{2}(1) = 1.97$	0.1601	no			
homoskedasticity	/Cook Weisburg						
	test						
No outliers	Standardized	7 outliers	0.000	yes			
	residuals > 3.5	5 negative					
		2 positive					
No omitted	Ramsey reset test	F(3, 34) = 1.67	0.1923	no			
variables							
No	VIF < 10	Mean VIF	13.21	yes			
multicollinearity							

Ken Bollen and Robert Jackman (1990) have noted that when Cook's D exceeds 4/n, the observation in question exhibits problematic influence, where n designates the sample size. If our effective sample size is 49, that means Cook's D values in excess of 0.082 would be problematic. The residual distribution is riven with 28 of these observations, nine of which exceed unity while five of which exceed 4.0. Under these circumstances, perhaps a nonparametric bootstrap would be the best approach to arriving at empirical standard errors. According to Bollen and Jackman, Belsey in 1980 suggested that the lower

size cut-off for a dfBeta coefficient is 2/Vn whereas the upper is unity. With this effective sample size, this amounts to 2/7=0.286. I performed a sensitivity test on the parameter estimate of the natural log of the cumulative external dose of CS137, by listing all of the dfBetas for the natural log of the cumulative external dose for any observation with a Cook's D greater than unity. No dfBeta was indicated. From this I suspect that the changes in significance result either from correlations with omitted variables or from multiple low-level negative correlations with included variables or from the improvement in power by reducing the sample size of the correlation matrix and thus in turn attenuating the power of the model to detect medium to small effects. I suspect that this problem will be alleviated by the input of more male respondents as our data collection continues. With the plethora of outliers, a parametric bootstrap would probably not bear fruit. With that caveat issued, we undertake the bootstrap validation nevertheless.

Linear regress	Number of obs = 4 Replications = 101 Wald chi2(11) = 386.2 Prob > chi2 = 0.000 R-squared = 0.820 Adj R-squared = 0.767 Root MSE = 15.345					
radh1w3	Observed Coef.	Bootstrap Std. Err.	z	P> z	Norma Norma [95% Conf	l-based . Interval]
age childw3 radfmw3 enlev injselfr liqw1 liqw3 vishphw1 sepaw3 movew2 lcumdosew3sq _cons	.2128123 -7.987085 .852851 .2073325 12.50024 -2.853126 -1.249931 -15.88501 -28.57907 -10.09214 .363855 -16.0379	.2542247 3.242337 .0997553 .0935577 5.208347 1.168345 .6963277 1.67703 16.03039 7.518164 .2761775 19.53673	0.84 -2.46 8.55 2.22 2.40 -2.44 -1.80 -9.47 -1.78 -1.34 1.32 -0.82	0.403 0.014 0.000 0.027 0.016 0.015 0.073 0.000 0.075 0.179 0.188 0.412	2854588 -14.34195 .6573342 .0239627 2.292067 -5.14304 -2.614708 -19.17192 -59.99806 -24.82747 1774429 -54.3292	.7110835 -1.632222 1.048368 .3907023 22.70841 5632128 .1148468 -12.59809 2.839913 4.643186 .9051529 22.2534

Table 13 Bootstrap validation of trimmed male model

For the square of the natural log of cumulative external dose of CS137 we observe that the significance level is closer to significance than with our first estimation of this model, but it remains nonsignificant. The number of moves is no longer significant. The number of separations is no longer significant. Otherwise, the model remains very much the same, as far as the parameter estimates and the goodness of fit indices are concerned. At this juncture,

we will turn to the female full and trimmed models as well as their validations. At the end of this presentation, we will sort the variable in order of their reliability, which will be computed from the proportion of models in which they were found to be statistically significant.

The Full female model

The female portion of the sample at this juncture is almost 70% of the total interviewed. The Therefore, we are about to review a portion of the sample that may be similar to the total sample for males and females than the male analysis by itself. As with the previous segments of the sample, we begin our analysis with a standard OLS regression, from which we can glean beta weights, following our combined variable selection technique of the Hendry-Richard approach and our hybrid bivariate screening (with matrix scatterplots overlaid with loess fitting lines). Then we attempt to trim the model of nuisance parameters before deciding whether a robust version is in order. We validate our analysis with a cluster-controlled bootstrap.

The full female model is the largest model developed at this interim juncture. It contains 28 parameter estimates, some of which Stata drops to avert multicollinearity. PcGive does not drop them for any such reason. Table 14 on the next page lists the variables in this model, beginning with the endogenous variable. Regardless of the discarding of three of the variables both statistical packages report a very respectable goodness of fit.

Both statistical packages report the R² of the model as 0.933 and the adjusted R² of the model as 0.889 Because these figures were high by social science standards, we decided to graphically display them so they could be reviewed. To visually examine the residuals of the model, we examined not only the goodness of fit but also the behavior of the residuals. In the top panel of the three panels in Figure 1, we observe what appears to be a remarkably good estimation from the PcGive version of the model.

To have confidence in a model, we also had to examine the theoretical meaning of the parameter estimates. We present the Stata output on Table 15. We address these explanatory variables in increasing order of their beta weights. Most negatively related among these variables with perceived health risk to Chornobyl radiation. Some comment may be in order about those variables that appear to be statistically significantly related to the perception of health risk from the radiation. The more the respondent believes he or she was at risk, the less the phobic anxiety. It was reasonable to believe in the risk of exposure, given the circumstances and lack of information and amount of uncertainty that these people endured.

Table 14 Table of variables in the full female model

variable name	type	format	label	variable label
radh1w3	byte	%8.0g		how much believed personal health is affected by radiation now
age	byte	%8.0g		Age of respondent in years
cĥildw2	byte	%8.0g		number of children in 1996
jsw3	byte	%8.0g		Job satisfaction on a scale of 0-100%, NOW
dvcew1	byte	%8.0g		Total number of divorces, experienced in time period 1976-1986
sepaw1	byte	%8.0g		Total number of separations, experienced in time period 1976-1986
shjobw2	byte	%8.0g		Percentage of strains and hassles related to job, 1996
shjobw3	byte	%8.0g		* Percentage of strains and hassles related to job, NOW
shh]w1	byte	%8.0g		Percentage of strains and hassles related to health, 1986
shfincw3	byte	%8.0g		Percentage of strains and hassles related to finances, NOW
shjobw2	byte	%8.0g		Percentage of strains and hassles related to job, 1996
shjobw3	byte	%8.0g		* Percentage of strains and hassles related to job, NOW
shh]w1	byte	%8.0g		Percentage of strains and hassles related to health, 1986
shhousw1	byte	%8.0g		Percentage of strains and hassles related to housing, 1986
beerw2	byte	%8.0g		nuber of beers per week in 1987–1996
vishphw1	byte	%8.0g		number of visits per year to a homeopath for a physical condition in
				1976-1986
mhoutw1	byte	%8.0g		number of medical visits for a mental health condition per year 1976-1986
mhinw2	byte	%8.0g		* number of days per year as a patient in a clinic for a mental health in
				1987–19
fdferw1	byte	%8.0g		* level of fear in percent from consuming foods contaminated with radiation
				in 197
injothr	byte	%9.0g	inj	Was anyone u know injured by Chornobyl accident?
evacselfr	byte	%9.0g	dum	Were u evacuated because of Chornobyl accident in 1986?
defnw2	byte	%8.0g		* consider hazardous (in percent) - deficiencies in essential nutrition,
				1996
airw1	byte	%8.0g		consider hazardous (in percent) - air and water pollution in 1986
airw2	byte	%8.0g		consider hazardous (in percent) - air and water pollution in 1996
radw1	byte	%8.0g		believed % of the radioactively contaminated area in 1986
radt]w1	byte	%8.0g		believed % of cumulative radiation exposed to in a lifetime now
radt1w2	byte	%8.0g		believed % of cumulative radiation exposed to in a lifetime now
medw1	byte	%8.0g		level of danger by general media (in percent) in 1986
medw2	byte	%8.0g		level of danger by general media (in percent) in 1996
neiwl	byte	%8.0g		level of danger by neighbors (in percent) in 1986
neiw3	byte	%8.0g		level of danger by neighbors (in percent) now
carcin	byte	%8.0g		* if a person is exposed to a carcinogen then he/she is likely to get cancer
				(% of
paran	byte	%8.0g		paranoid ideation
hp2probsoc	byte	%9.0g	hp2fmt	health causing prb with social life
1cumdosew3	float	%9.0g		Ln(cumdosew3)
skin	byte	%8.0g		a suntan is caused by radiating damage to the skin (% of agreement)
phobanx	byte	%8.0g		phobic anxiety

transparency as the *nourvelle vague*. It would have been unusual if this were otherwise at the time.

					F(34 52) = 21.45
Model	77645 051	24 2202	70444		$P_{1}(14, 12) = 21.43$
Model	77043.931	54 2203	466001		
Residual	2220.2/880	52 100.	400901		R-squared = 0.9334
					Adj R-squared = 0.8899
Total	83182.2299	86 967.	235231		Root MSE = 10.318
radh1w3	Coef.	Std. Err.	t	P> t	Beta
age	8099116	.1885641	-4.30	0.000	2595055
childw2	-6.076811	2.004463	-3.03	0.004	1568283
isw3	.0405977	.047702	0.85	0.399	.0489797
dvcew1	19.34957	12.97149	1 49	0.142	0937823
senaw1	1 435227	24 398	0.06	0 953	0049476
shiohw2	- 1306600	0643423	-2 17	0.035	- 1587725
shjobw2	.1330003	0575970	0.01	0.000	.130//23
shjuu	2006124	.03/30/9	6.30	0.000	-033273
SIIIIWI	. 3900134	.0020192	0.20	0.000	. 2009000
SNT INCW3	181303	.0202088	-3.39	0.001	20/2/83
shjobw2	(omitted)				
shjobw3	(omitted)				
shh lw1	(omitted)				
shhousw1	.0270548	.0510981	0.53	0.599	. 0298696
beerw2	-3.616702	1.046327	-3.46	0.001	1485943
hospw1	.1543934	.2593117	0.60	0.554	. 0460996
vishphw1	1221559	1.555324	-0.08	0.938	0050193
mhoutw1	-63,56694	11.20759	-5.67	0.000	3751083
mhinw2	5.412944	850217	6.37	0.000	3918566
fdferw1	0898282	0361347	2 49	0 016	1077615
iniothr	14 50102	4 10065	3 54	0 001	1816824
ovacsolfr	-14 26622	6 110857	-2 33	0.023	- 1160101
dofnw2	3756/10	0480740	7 91	0.023	4180842
ainw1	0290101	0400/45	0.66	0.510	021210
airwi	1466122	.043/431	0.00	0.012	.031219
a Trw2	.1400122	.0343208	2.70	0.009	.1140013
radwi	093984/	.0453465	-2.0/	0.043	11530/
radtiwi	1818966	.0608485	-2.99	0.004	21/9561
radt lw2	. 2032039	.0658901	3.08	0.003	.2304378
medw1	3578396	.0582068	-6.15	0.000	4167942
medw2	. 3216693	.0644562	4.99	0.000	. 2784995
neiw1	.1874692	.0464971	4.03	0.000	. 2122646
neiw3	.2057604	.0492574	4.18	0.000	. 2382699
carcin	. 216806	.0469808	4.61	0.000	. 2234897
paran	2.754042	. 5258628	5.24	0.000	. 3434905
hp2probsoc	27,51967	5.097608	5.40	0.000	2957818
lcumdosew3	13,55739	2,236715	6.06	0.000	- 3657654
skin	0747895	0359887	2 08	0.043	1010782
nhohany	-3 650200	5927038	-6 16	0.000	- 4187053
cons	-76 05886	16 5505	_1 65	0.000	. 10/ 015
	-/0.93000	10.100	-4.05	0.000	•

Table 15: The full female model

The belief in the danger posed by the media was also inversely related to the perceived health risk of the fallout. Perhaps the media was a major source of information about the problem; the media served as an early warning mechanism many may have believed. Glasnost had

begun, so people believed in freedom of the press, openness, and transparency more than before. Also very strongly negatively related to perceived health risk from the accident was the number of mental health visits. The more the mental health visits the more oblivious people were to the potential threat. There was a significant negative relationship between the belief that the amount of radiation to which they were exposed in 1986 was equivalent a lifetime exposure. Yet the polarity of this belief was significantly reversed by the time of the second wave of our study. Moreover, there was a significant negative relationship between stresses and hassles due to financial matters with the belief in the amount of perceived health risk. Those without means may have found it more difficult to travel on the spur of the moment for example. Ukraine was not a highly mobile society at the time and most people did move around much. Also inversely related were the stresses and hassles on the job. The more the respondent had to contend with sh

If these models warrant robust analysis that downweights the outliers or implements Halbert White's sandwich variance estimators, we can apply those also. The decision to resort to that analysis will depend on sufficient violation either of the taboo on outlier distortion or the homoskedasticity assumption of ordinary least squares regression estimators.

From our collection of full and trimmed models, we score each variable that attained statistical significance. The sample splitting entailed provides us with a reliability index of the variables that found their ways into our models. We can also tally the percentage of cases in which the signs were identical and weight the significance by this amount. Moreover, we can list the parameter estimates of the variables and compute the variance of them. By normalizing this, we can form another weight. The original score can be multiplied by these weights to comprise an overall reliability index of the variables. We can sort them accordingly and obtain a reliability or stability index of the variables in accounting for perception of health risk of nuclear radiation---- specifically from Chornobyl. We would then suggest that this same procedure be pursued for residents who were potentially exposed to similar nuclear disasters to ascertain what the psycho-social impact of these disasters tends to be.

References:

Efron, B. and Tibsharani, R.J, 1993. An Introduction to the Bootstrap, Boca Raton, Fla: Chapman Hall/CRC, Chapter 14.

Bollen, K. and Jackman, R. (1990),"Regression Diagnostics: An Expository Treatment of Outliers and Influential Cases" in Fox, J. and Long, J.S. (Eds.). Modern Methods of Data Analysis, Newberry Park, CA: Sage Publications, Inc., 266-267.