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1 Introduction

1.1 Primary Objectives

The primary objective of this analysis is to search for and assess possible latent
variables among the variables selected by AutoMetrics with a view toward using
those variables in our analysis. With this version of the paper, we try to find
the optimal models to explain two principal aspects of post-nuclear event health
risk: the threat to the family and the threat to oneself, both as reported by the
respondent.

1.2 Strategy
1.2.1 Premier statistical packages

No one statistical package does everything, and each has its own strengths and
weaknesses. Some packages offer features that others do not. If we can make the
assumption that the data are not altered significantly by transferring it from
one package to another, we can compare the results of one package to those
of another. To the extent that the packages permit identical control of missing
values and their replacement, we may compare the results of the same statistical
procedure with those results produced by others. This permits corroboration of
the analysis as well as comparison of algorithms. It also enables us to apply the
outstanding features of one package to those of another.

For variable selection, we use AutoMetrics within OxMetrics, Stata, and
MARS. If we cannot directly import a dataset from one package to another, we
use Stattransfer to convert the dataset.



1.2.2 Statistical methods

AutoMetrics

The first strategy is to employ AutoMetrics as a front end to build an opti-
mal regression model. It uses a general-to-specific (GETS) modeling strategy to
minimize violation of the regression assumptions. It begins with a general unre-
stricted model (GUM) in which all theoretically relevant variables are included.
The GUM therefore is a specification of the local data generating process, which
is the driving process. As part of this process, the GETS algorithm will perform
variable selection out of all plausible explanatory variables, to the fullest extent
possible congruent with the statistical assumptions that validate such models
while attempting to form an optimally statistically congruent, parsimonious,
and encompassing model. By statistical congruence, I refer to fulfillment of the
assumptions of the model being developed and by encompassing, I refer to both
the scope of theoretical explanation defined by the variables chosen and the
amount of variance explained by them.

We have more than 2000 variables in our dataset. We have approximately
700 respondents— consisting of 340 male and 363 females. We are performing,
as is conventional, in the psycho-socio-medical sciences, gender-specific analysis.
We consider these datasets to be sufficiently large to detect a small to medium
effect size in a regression analysis.

We have many more variables than we do observations and to date, Au-
toMetrics is the only statistical package that can handle a regression analysis
with more variables than observations, due to its remarkable dataset blocking
technique. By segmenting the data into blocks smaller than the number of
observations, AutoMetrics can test blocks for optimal predictors and then com-
bine them into blocks that remain smaller than the sample size. By reducing
the number of nonsignificant explanatory variables, AutoMetrics selects those
variables which are congruent with statistical theory and optimally explain the
dependent variable(s). By sorting the variables by the square of their ¢-values,
only one test is necessary for all predictors, in the variable selection thereby
elegantly circumnavigating the experimentwise error rate problem.

In a cross-sectional model, there is no need for a pre-search lag reduction of
the GUM. It is also contended that if the general unrestricted model is congru-
ent, any of its mutually encompassing sub-models which cannot dominate the
GUM another will also be congruent.

AutoMetrics searches for omitted variables to avoid omitted variable bias
in the model, after forming blocks of dataset segments for further analysis.
Because specification error can bias parameter estimates of an analysis easily,
we use AutoMetrics to employ the general-to-specific algorithm to minimize this
potential problem in our variable search for an optimal model. The program
repeatedly searches within the dataset for variables that the user might have
inadvertently omitted to minimize the specification error.

AutoMetrics proceeds to generate contending models by a tree search for sig-
nificant explanatory variables. All possible combinations of variables are tested.
If the inclusion of a variable violates an essential regression specification require-



ment or if the inclusion of that variable reduces model encompassing, that path
is terminated. Successive congruent models must encompass earlier models and
this may be represented by decreases in the deviance or the information criteria.
Successive simplification proceeds according to the theory of model reduction
as long as later models are congruent and are more encompassing than former
ones. The gauge, which is the average retention rate of irrelevant variables, is
close to a for AutoMetrics, whereas the potency, which is the average retention
rate for relevant variables, is close to theory power for AutoMetrics [? , 36].
If contending models in the final competition are tied in fit, those models are
sorted, sifted, and selected according which model has the smaller tie-breaking
Schwartz information criterion.

MARS data mining

We take the all explanatory variables and input them to a program, Mul-
tivariate Adaptive Regression Splines (MARS), developed several years ago by
Jerry Friedman at the Stanford Linear Accelerator Center. It generates radial
basis functions, which sometimes emphasize parts of our existing variables that
are linear rather than the parts, particularly when they appear as pieces of local
trends linked at knots. When such piecewise planks contribute to the overall
goodness of fit, we add them to the pool of variables to be assessed by Auto-
Metrics. The AutoMetrics program then sifts them out if they are detrimental
to the statistical congruency, parsimony, or encompassing scope of the model.

Those basis functions selected by AutoMetrics to be deemed make impor-
tant contributions to the theory are included in the final models. We expected
to find that in some instances, these transformed variables are recentered or
restructured to emphasize the part of the variable that contributes to the ex-
planation. This may particularly be the case if they represent a delayed or
partial contributor to the endogenous variable under analysis, such that the
explanatory variable is transformed into a the shape of a hockey stick. The
effect explained by the variable may not appear until after a threshold has been
reached. The basis function transformation permits this aspect of the variable
to be implemented, whereas if the variable were to be untransformed it might
be overlooked as generally not statistically significant.

MARS may also point out which interactions have to be investigated, some-
thing that AutoMetrics does not do, except insofar as it tests whether White’s
specification test generates statistically significant results.

In these respects, MARS may complement our AutoMetrics regression model-
building and we will offer some examples later. It will be interesting to observe
how much of our dataset MARS can transform so that AutoMetrics will accept
it in this manner.

Dimension reduction

In the interest of dimension reduction, which is an important aspect of par-
simony, we perform a principal components and factor analysis on the variables
selected by AutoMetrics as important explanatory predictor variables of our fo-
cal variables of interest—that of self-perceived Chornobyl health threat to oneself



and that of self-perceived Chornobyl health threat to the family.

Because these variables are to some extent synonymous, we tend not to use
them in the same model unless we can control for simultaneity, which we do at
a later stage when we perform our etiological path analysis. In preparation for
that analysis, we perform a cumulative modeling process for wave 1, waves 1
and 2, and waves 1, 2, and 3.

By examining the stability of the extracted rotated factors from one wave
to the next, we obtain a sense of factor structure and stability.

Although we are constrained by the assumptions of valid statistical regres-
sion models as well as those of of the types of principal components and factor
analysis employed, we can determine from the relative and absolute eigenstruc-
ture of these model results, whether factors persist long enough for us to consider
a dynamic path model with dynamic factors. For each of our three models, we
will take note of the coverage, definition, and persistence criteria in order to
assess factor structure and stability. By making our factor analytic variable
pool dependent upon AutoMetrics variable selection within the model-building
process, we retain our principal criterion of focus and dependence upon the core
constructs of Chornobyl related health threat to the self and to the family.

1.2.3 Three types of dynamic factor structure: coverage, definition,
and persistence
1. the percentage of common variance explained by extracted factors
2. the number of factors with eigenvalues greater than unity.
. the number of factors with high loaders (greater than .40)

. the number of factors with more than 3 high loaders.

. the proportion of factors that persist over 2 waves

3
4
5. the proportion of factors extracted with more than 3 high loaders
6
7. the proportion of factors that persist over 3 waves

8

. the proportion of factors that last only for 1 wave

1.2.4 Limitations

If there are missing values, and the sample size therefore is not constant through-
out, the program will not generate the correlations. Therefore, items with re-
duced sample sizes or persistent non-significance had to be dropped for the
analysis to be completed. This changes the item selection subject to factor
analysis, which could influence the factor structure found. For this reason, the
results of this analysis are to be used only as general guidelines as to possible
latent variables to be considered for path analysis to be estimated. They are
not to be used as a basis for inference.



Because there are autocorrelations in the models between one wave and the
other, specialized programs are required to handle these problems properly in
wide formatted files, like those being used here. AutoMetrics addresses these
problems with its Newey-West robust estimators used in wide format, whereas
Stata requires the format to be changed to a time series or panel data long
form in order for proper management. The Newey-West standard errors are
analogous to White standard errors in cases where there is no autocorrelation
between waves, as would be the case in the Wave one analysis, However, at that
point the programs cease to be comparable owing to the different data format.

This unaddressed autocorrelation problem lead to inflation of the R?, F-
tests, and t-values as well as a bias in the estimation in the wide formatted files.
AutoMetrics uses ordinary least squares and conditional least squares to deal
with this problem. The Stata files employ ordinary least squares with robust
standard errors which asymptotically control for heteroskedasticity but not for
autocorrelation in the wide format. For this reason, the AutoMetrics models
are considered the guideline on which the analysis relies.

For the reason that the model changes from beginning general unrestricted
version to a more trimmed one, the goodness of fit may change. Also, any
autocorrelation remaining might inflate the R? and associated statistics, for
which reasons AutoMetrics generally drops that goodness of fit measure from
its output and relies on information criteria instead. The use of the R? statistic
as a measure of power of the model is not recommended unless autocorrelation
is correctly dealt with in the file being used.

The net result is to add value to the final models by examining all alternative
interpretations and transformations of the variables available for this analysis.
In Table 1, we examine the variables selected by AutoMetrics at each cumulative
wave for their congruency, parsimony, and encompassing character in explaining
the perceived threat to one’s family.

2 Factor Analysis of explanatory variables taken
from AutoMetrics selected variables
from Regression analysis of Chornobyl related
health threat to the family

At this stage of the investigation, we place the MARS basis functions in the
data pool from which AutoMetrics selects the optimal explanatory variables
in accordance with those three criteria—statistical congruence, parsimony, and
encompassing. The model selected is the model which maximizes these stan-
dardizes and minimizes their violations. By placing all of our variables into
datasets into the pool from which the program selects variables, we do not prej-
udice the selection. Rather we enhance its efficiency greatly as a result of the
automation of the process.

We do not yet introduce the raion dummy variables because the sample



gathered sparse data from some of the outer-lying rural raions given the time
and funding constraints imposed upon us. For this reason we will have to
combine some of the adjacent areas to provide for sufficiently large sample sizes
in which to perform our kriging and spatial autoregression analysis. We intend
to do this soon but have not do it yet. But this is not necessary until we use
the panel and multilevel analysis where the raions will become an upper level
of analysis.

The only statistical program to date that can handle more variables than
observation is AutoMetrics owing to its capability of partitioning the dataset
into blocks or segments, and operating on these blocks sequentially and cumu-
latively. Because our combined dataset consists of more than 2000 variables
with approximately 700 respondents, of the large number of variables in the
general unrestricted model, we use a tiny significance level of 0.001 to avoid
over-inclusion of variables with borderline significance.

We are performing separate analysis with respect to our dependent variables,
Chornobyl related health threat to the family (radfmwl radfmw?2 and radfmw3
respectively for waves 1, 1 and 2, along with waves 1, 2 and 3) and the perceived
Chornobyl related health threat to the self (radhlwl radhlw2 and radhlw3 re-
spectively for cumulative waves 1, 2, and 3). These two notions of threat greatly
overlap by definitions, although they are not the same.

This method is not atheoretical. Actually, it presumes that the researchers
have gathered the variables needed to accurately describe the phenomenon they
are investigating. It merely minimizes any inadvertent violation of the funda-
mental assumptions of multiple linear regression modeling in a linear or simul-
taneous context.

If we use both variables of the same wave, we will be building an intrinsic
reciprocal relationship into our model. Unless we model this with a nonrecur-
sive simultaneous equation, we would do well at first to avoid this problem by
preventing the use of both variables in the same wave. The avoidance will pre-
clude an artificial inflation of the R?, which will enable a more comprehensive
variable search for variables that will contribute to the explanation of the chosen
dependent variable.

Therefore, at this stage of the analysis, we artificially exclude this variable
at the time of variable selection, with the intention of test simultaneity of the
relation with a nonrecursive robust path model at a later time.

Therefore, we perform two separate sets of regression models, with only one
of these two variables as the dependent and the other is not included except
in later models where there may be a relationship, although lags of it may be
included as instrumental variables. However, this exclusion is not necessary if
we have more than one wave in the analysis, as we do for waves one and two, as
well as in the analysis for waves one, two, and three. In those cases, the lagged
value of the other variable may be used as an instrument in a partial adjustment
model, as long as we use the proper standard error adjustment.

We use Newey-West standard errors only to render this model comparable to
those AutoMetrics models that follow it. However, without any other waves in
this model those standard errors are consistent with White standard errors, that



are asymptotically robust to violations of heteroskedasticity. Stata requires a
time series or panel data model format to handle Newey-West standard errors,
but permits White robust standard errors in a wide data format. However,
because AutoMetrics permits Newey-West standard errors in the wide data
format, we rely on AutoMetrics for the first stage in this analysis.

In Table 2, we present the male regression model for radfmwl which has
selected the variables listed therein as the best explanatory variables for that
dependent variable. Although the model assumptions of hetero- skedasticity
appear not to be satisfied, those problems are accommodated asymptotically by
the use of the Heteroskedastic and Autocorrelation corrected standard errors
(HACSE) in the model. Even if there may be a problem with normality of
the residuals, that problem might not be fatal if the residual distribution is
sufficiently symmetrical and the third and fourth moments are not seriously
compromised.

In this model, we note that two of the basis functions, bfl and bfll, were
selected as explanatory variables. In Figure 1, the relationship between the
dependent variable and the number of cancer cases in the Kiev and Zhitomyr
Oblasts is located in the top panel, whereas the transformed basis function,
BF'1, can be seen in the lower panel.

Bfl is a recentering of the variable measuring the belief most of the cancer
cases in Kyiv and Zhitomyr Oblasts stem from Chornobyl radiation, shown in
Figure 1. This transformation may reflect the hockey stick structure of this
variable at lower levels of cancer there seems to be little relationship, and the
relationship depicted in a lowess graph shows that line of optimal local fit is
more or less level but after the number of cases becomes sufficiently large, per-
haps around 40, a positive relationship emerges between the perceived threat
to the family and the number of cancer cases in these two Oblasts. After this
level a slight slope begins to appear. By the time the number of cancer cases
observed reaches 60, the slope become steeper. This gives the relationship the
shape of a hockey or lacrosse stick. By recentering the variable, we move the
point at which that positive relationship emerges to the left by about 40 points,
so that more of the slope appears throughout the graph, the relationship is more
uniformly steeper in the window of view and the transformed relationship ap-
pears to be now more uniformly a linear relationship, which is consistent with
the requirements of parameter constancy by AutoMetrics.



2.1 Male regression models with self-perceived Chornobyl
health risk (radfmw1) as dependent variable

2.1.1 Radfmwl model For wave one

Table 1 Male wave 1 radfmw1 Variable index 89 variable name type format la-
bel variable label 79 shhousw1 double Percentage of strains and hassles related
to housing in 1986 kmwork double approximately how far away was your w/s
from the chornobyl plant (in kilometers) radtlwl double believed % of cumu-
lative radiation exposed to in a lifetime in 1986 BSThos double Basic symptom
invenstory hostility subscale Havmil double Distance from Chornobyl in miles
bfl float %9.0g bfl = max(0, kzchorn - 40) bfll float %9.0g bfl1= max(0, 20
- sufamwl) airwl double consider hazardous (in percent) - air and water pol-
lution in 1986 dafter double how many days lapsed after Chornobyl accident
before you heard about the acciden BSIpar double Basic symptom invenstory
Paranoia subscale fallasr double I have trouble falling asleep: I do not fall alseep
easily at night (reversal of ffallas) icdx1nr9 double icdxlnr==454 chronic t &
a dis icdx1nr2 double icdx1lnr==goiter nec icdx4nr8 double icdx4nr==angina
pectoris icdx5nrl0 double icdxbnr==ac bronchitis/brnchial
89



From these variables, AutoMetrics finds that the optimal regression equation
explaining the variance in the Chornobyl related health threat to the family
reported by the male respondent as

Equ :Radfmwly = 0.142shhouswl; — 0.0612kmwork

+0.286radtlwl; + 2.612BSThos

+0.087Havmil 4+ 0.301BF1 — .666 BF'11

+0.255airwly + 0.037da fter

—1.297BSIpar 4 3.997 fallasr

+31.19icdx1nr9(chronic t and a dis veins lower extremities)

—28.297icdx2nr2(thyrotoricosis) — 37.61Ticdrdnr8(angina pectoris)
—26.711icdxbnr10(acute bronchitis) +e; (1)

The parameter estimate details of which may be found in Table 2. The time-
varying parameters have a subscript of t, whereas the time-invariant parame-
ters do not. The basis functions are enumerated and begin with a BF or bf.
Their definitions are contained within the accompanying legends. Because of
the heteroskedasticity and the autocorrelation between waves, we employ the
Newey-West robust standard errors for these equations, thereby asymptotically
robustifying our equations from deviations from autocorrelation bias and aber-
rations in the residual homogeneity of variance.

10



79 Table 2 Male Radfmwl model for wave 1 including basis functions 79
EQ(21) Modeling radfmw1 by OLS-CS male final model using bf The dataset is:
/Users/robertyaffee/Documents/data/research /chwk /phase3 /data/ox/chwide28apr2012males.dta
The estimation sample is: 2 - 340 Dropped 27 observation(s) with missing values
from the sample

Coefficient Std.Error HACSE t-HACSE t-prob Part.R?shhousw10.1424120.040480.040763.490.00050.0395k1
0.06129250.015980.01612—3.800.00020.0464radtlw10.2859300.036260.043426.590.00000.1274 BSThos2.612120.%
0.6662390.16630.1793—3.720.00020.0444airw10.2549990.039850.044405.740.00000.0999da fter0.03772940.0314(
1.297110.45750.4506—2.880.00430.0271 fallasr3.996881.0061.1123.590.00040.0417icdx1nr931.185810.779.1123.
28.296723.734.571—6.190.00000.1143icdx4nr8—37.617112.067.779—4.840.00000.0730icdz5nr10—
26.710713.895.938 — 4.500.00000.0638

sigma 23.3991 RSS 162612.383 log-likelihood -1418.66 no. of observations
312 no. of parameters 15 mean(radfmwl) 51.4423 se(radfmw1l) 35.8812 When
the log-likelihood constant is NOT included: AIC 6.35228 SC 6.53223 HQ
6.42420 FPE 573.839 When the log-likelihood constant is included: AIC 9.19015
SC 9.37010 HQ 9.26207 FPE 9800.87

Normality test: Chi?(2) = 7.8760[0.0195)xHeterotest : F(25,285) = 1.6317[0.0318]x
Hetero — Xtest : F(80,230) = 3.2156[0.0000] x x RESET23test : F(2,295) =
2.3091[0.1011]

We should note that a statistical regression model is valid when its assump-
tions are fulfilled. To the extent that they are violated and measures are not
taken to deal successfully with those violations, the ability of the model to
explain, predict, or even evaluate existing policy are undermined. For these
reasons, AutoMetrics assesses the principal assumptions of the models at the
base of each output. One of these fundamental assumptions of regression models
are that the residuals are normally distributed, so the normal probability curve
can serve as a vehicle by which to assess the model. In this case, the residu-
als deviated somewhat from perfect theoretical normality, as measured by the
Doornik and Hansen test, and therefore there is an asterisk after it’s p-value.
This test contains a small sample correction factor that others do not possess
(7, 287).

Another assumption of ordinary least square regression models is that the
residuals are homogeneous, with respect to the fitted line. PcGive contains
several tests for homogeneity—entailing the use of Halbert White’s general spec-
ification test which regresses the squared residuals on all of the squares of ex-
planatory variables to ascertain where there was an significant relationship that
was omitted in the modeling. Another of White’s tests is also used, denoted the
“Hetero-X test”, which also includes the cross-products of all of the regressors
in this model [? , 288]. A significance star next to the p-value of this test
suggests that there was a violation. However, we have employed Newey-West
standard errors, which are based on White’s standard errors, and are designed
to asymptotically alleviate this problem.

Also, James Ramsey of New York University’s economics department devel-
oped a RESET test in 1969 to assess the specification error of the model by
regressing the squares and cubes of the predicted value of the regression on the
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parameter vector to determine whether reasonable specifications of the model
have been omitted [? , 289].

Multivariate adaptive regression splines (MARS) was developed by Jerry
Friedman as a form of machine learning algorithm to help people perform re-
gression analysis. We use it here to try to find transformations and interactions
that we may have overlooked. It adds particular value in linearizing effects that
appear to be piecewise or spline-like. These effects appear to be some form of
hockey stick or lacrosse stick. Hastie, Tibshirani, and Friedman refer to these
forms as piecewise polynomials and splines [? , 117-138]. Harrell describes them
as splines. If they were in a time series framework David Reilly would call them
a local trend whereas Andrew Harvey might refer to them as a broken trend.
Rather than test each of our several thousand variables in our dataset, we de-
cided to take advantage of what MARS has to offer in machine learning to locate
the variables which are candidates for MARS essentially can form most versions
of this transformation to render an effect more amenable to a regression analy-
sis. If the effect of the basis transformation is hard to identify in Figure 1, it is
easier to observe in Figure 2. MARS identifies those effects that are amenable
to basis transformations (BF) and interactions and suggests them to the user.
Bfl1 entails a re-centering of the variable, sufamwl, family support in 1986.
To the extent that this situation appears to threaten the family, the amount
of family support could explain the threat to the family. By reversing the sign
of the change and by shifting the location of the mean by 20 points, a basis
function transformation is implemented, as is shown in Figure 2. By transform-
ing variables that may have originally appeared to exhibit a delayed response,
the basis functions appear to be able to linearize the relationship between the
dependent and the independent variable, thereby rendering the variable more
amenable to analysis in a program that supports parameter constancy.

Now that we reviewed the variables in the male model, we can examine
what happens when we examine them with a view those underlying correlations
among them, which we call latent variables or factors. Factors in this case are
not discrete variables with two or more levels but rather patterns of correlations
among the variables that explain the Chornobyl related health threat to the
family.

To do so, we submit these explanatory variables to a factor analysis. Because
some of the variables are dichotomous, we have to begin with a principal com-
ponents analysis, which generates the components from polychoric correlations.
These matrix output is then read into a factor analysis program which proceeds
to orthogonally rotate these factors in hyperspace to optimally approximate a
simple structure by which we can define the factors.

We then examine the eigenstructure of the factors as a baseline from which
to assess factor definition, integrity, and stability. We store these assessments
in a matrix after each analysis and at the end we compare and contrast these
salient aspects of the eigenstructure to learn what these factors are, how long
they persist, and whether or not they exhibit any evolution.

With these objectives in mind, we assess the factor analytic output of the
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Figure 1: transforming local cancer cases variable into a basis function
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Figure 2: transforming family support into a basis function
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radfmw1 male analysis at wave one.
79 Table 3 Principal component analysis for male respondents in 1986 (wave

one) 79 k Eigenvalues Proportion explained Cum. explained 5152418 1

2.660461 0.241860 0.241860 2 1.984645 0.180422 0.422282 3 1.216254
0.110569 0.532851 4 1.089010 0.099001 0.631852 5 0.990000 0.090000
0.721852 6 0.835173 0.075925 0.797777 7 0.712497 0.064772 0.862549 8
0.612480 0.055680 0.918229 9 0.550436 0.050040 0.968269 10 0.226380
0.020580 0.988849 11 0.122664 0.011151 1.000000 . matrix define mpcorrl=

r(R) . factormat mpcorrl, n(340) mineigen(1) blanks(.36)

From this analysis, we note that there are only four factors with eigenvalues
above one, explaining more variance than an individual variable. Because this
is a principal components analysis, these four factors are essentially equal to
an extraction of all of the variance. When we input this matrix into a factor
analysis, shown in Table 4, we note that three of the factors account for about
99% of the variance.

We do not want to be bothered by unique variances, so we focus on the
common variance and find int table 4 that the first two factors account for
approximately 87.7% of the common variance. Therefore, we extract only two
of these factors.
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79 Table 4 Unrotated factor structure for male respondents in wave one 79
Factor analysis/correlation Number of obs = 340 Method: principal factors

Retained factors = 2 Rotation: (unrotated) Number of params = 21 1360

Factor Eigenvalue Difference Proportion Cumulative 1360 Factorl 2.07694
0.37830 0.4826 0.4826 Factor2 1.69864 1.22264 0.3947 0.8772 Factor3 0.47600
0.08940 0.1106 0.9878 Factor4d 0.38660 0.13039 0.0898 1.0776 Factorb 0.25621
0.16818 0.0595 1.1371 Factor6 0.08803 0.08028 0.0205 1.1576 Factor7 0.00775
0.04737 0.0018 1.1594 Factor8 -0.03962 0.06164 -0.0092 1.1502 Factor9 -0.10125
0.08430 -0.0235 1.1267 Factorl0 -0.18555 0.17412 -0.0431 1.0836 Factorll -
0.35967 . -0.0836 1.0000 1360 LR test: independent vs. saturated: chi2(55) =
1092.15 Prob;chi2 = 0.0000

Many analysts are content to try to divine the nature of the factors from the
high loadings of the variables without bothering to rotate the factors. However,
we have found that an orthogonal rotation in hyperspace optimizes simple struc-
ture and enhances the ability of the analyst to define the factors. To further
clarify which variables have high loadings on the factors, we cut off the display
at 0.36 so that loadings of magnitudes less than that threshold are not shown.
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79 Table 5 Factor loadings (pattern matrix) and unique variances 132014

Variable Factorl Factor2 Uniqueness 132014 shhouswl 0.3668 0.8653 kmwork
0.8747 0.1950 radtlwl 0.9450 BSThos 0.7601 0.3930 Havmil 0.8829 0.1945
bfl 0.6222 0.6094 bfll 0.8859 airwl 0.3698 0.8607 dafter 0.9979 BSIpar
0.5358 0.6622 fallasr 0.6045 0.6156 132014 (blanks represent abs(loading);i.36)

With this visual aid of suppressing the display of those variable which do not
load highly on these factors, we define the two factors extracted by an assessment
of what the high loadings on the factor, after rotation have in common.

79 Table 6 Analysis of the rotated factors for male respondents 79 . rotate,

blanks(.36) Factor analysis/correlation Number of obs = 340 Method: principal

factors Retained factors = 2 Rotation: orthogonal varimax (Kaiser off) Number
of params = 21 1360 Factor Variance Difference Proportion Cumulative 1360

Factorl 2.06121 0.34683 0.4789 0.4789 Factor2 1.71437 . 0.3983 0.8772 1360
LR test: independent vs. saturated: chi2(55) = 1092.15 Prob;chi2 = 0.0000

Rotated factor loadings (pattern matrix) and unique variances 132014 Variable

Factorl Factor2 Uniqueness 132014 shhouswl 0.8653 kmwork 0.8970 0.1950
radtlwl  0.9450 BSIhos 0.7790 0.3930 Havmil 0.8972 0.1945 bfl 0.6212
0.6094 bfll 0.8859 airwl 0.8607 dafter 0.9979 BSIpar 0.5705 0.6622 fallasr
0.6199 0.6156 132014 (blanks represent abs(loading);.36)

The most powerful factor, the first of two orthogonal factors, has four vari-
ables that are loading highly onto it. From the lower panel of Table 6, we
examine the variable loadings on the factors and note that four variables have
high loadings on the first factor. We consider a high loading to be one that has
a loading of over .36 on the factor. and try to decide what the Basic symptom
inventory (BSI) hostility subscale, the BSI paranoia subscale, trouble falling
asleep (fallasr) and a linearized belief that most of the cancer cases in Zhito-
myr and Kiev Oblasts stem from Chornobyl radiation exposure. This may be
a representation of the trauma sustained by the males after Chornobyl. The
full impact may be enhanced by the delay on the part of the authorities fully
assessing the gravity of the situation and to admitting to the outside word what
the Swedes had already figured out when their measurement equipment began
indicating radioactivity in the environment. Moreover, the impact may have
been further enhanced by the delay in admission of the nature of the emergency
and what was needed in order to protect the public from the hazards that might
arise. This first factor, which was an emotional reaction to the nuclear event,
accounts for about 47.9% of the common variance (Table 6 upper panel).

The second factor, that accounts for an additional 39.8% of the variance
is a fixation on the distance from the event. The two variables loading highly
on this factor are the number of kilometers of the workplace to the accident
site (kmwork) and the geodesic distance in miles computed from the Haversine
formula for spherical distances between two geographical locations between the
residential location in 1986 and the location of Chornobyl (Havmil). Together
these two factors account for 87.7% of the common variance within the intercor-
relation of the selected variables for the male respondents. With only two high
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loaders on this factor and with both of these variables being different measures
of the same underlying construct, we do not have difficulty defining this factor.
It is clearly a distance from the accident site. We will be looking for evidence of
these factors on the part of the female respondents at the time of the accident,
as well as for evidence of the persistence of these factors in later waves.

At this point in time, we construct a matrix to help us compare the salient
aspects of the eigenstructure of this canonical decomposition of the intercorrela-
tions. This list followed the subsection on dimension reduction. In the rows, we
have the measures that we discussed there and in the columns of the matrix we
have the six different models that we will compare— consisting of the cumulative
models for males and females from wave one (the year of the accident—1986)
through wave three, the recent years since 1997 to the time of the interview.
Therefore, at this juncture the matrix is shown in Table 7.
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79 Table 7 Factor structure Comparison 79 MaleW1l FemW1 MaleW12
FemW12 MaleW123 FemW123 1365 PctCmnVarExp .46 00 00 0 NFex 20
0 000 NFhiloadrs 100000 NF3PlusHi 10000 0 PropFw3HL 5000
0 0 PropFpers3 . 000 00 PropFpers2 . 000 00 PropFpersl 500000
79 Legend: 1 = percentage of common var explained by extracted factors 2 =

number of factors with eigenvalues j 1 3 = number of factors with high loaders

;40 4 = number of factors with more than 3 high loaders 5 = proportion of

factors extracted with more than 3 high loaders 6 = proportion of factors that

persist over 2 waves 7 = proportion of factors that persist over 3 waves 8 =

proportion of factors that persist for only one wave MaleW1 = males in wave

one FemW12 = female respondents in waves one and two MalesW123 = male
respondents in waves one, two, and three, etc. 79

2.2 Female respondents in 1986 (wave one)

When we examine the variables selected by AutoMetrics to explain the Chornobyl
related health threat to the family as perceived and reported by the female re-
spondents, we obtain

79 Table 8 Variables explaining Chornobyl related health threat to the fam-
ily as reported by the female respondents 79 variable name type format label
variable label 79 icdxlnr7 byte %8.0g icdxlnr==454 varicose veins edu7 byte
%9.0g Ph.D./Doctor of science aborwl byte %8.0g number of pregnancy ter-
minations in time period 1976-1986 polprwl byte %8.0g consider hazardous (in
percent) - political problems in 1986 radltw1 byte %8.0g % belief cumulative ra-
diation over lifetime exposure dangerous in 1986 HP2vacatn byte %9.0g hp2fmt
Hlth profile Pt2: Hlth probs interfering with vacations icdx4nr9 byte %8.0g
icdx4dnr==434.91 crbrl art ocl nos w infarc icdx5nr9 byte %8.0g icdx5nr==varicose
veins in legs bf10 byte %9.0g bf10 = max(0, sufamwl - 20) 79

Given these variable definitions, AutoMetrics formulates the optimal expla-
nation of the Chornobyl related health threat to the family in the form of a linear
regression estimated by ordinary least squares and conditional least squares as

Eqp1.Radf mwl; = —38.223icdz1nr7(varicose veins) + 89.182edu7 + 5.409aborwl
+0.259polprwl
+0.331radtlwl 4 22.752H P2vacatn
—57.113icdxdnr9(stroke) — 36.984icdx5nr9(varicose veins in legs)
+1.348 BF10(recentered family support) +e; (2)

with a more detailed explanation of the parameter estimates found in Table 9 on
the next page. If the reader wonders why the signs of the medically diagnosed
diseases (icd9 codes) have negative signs, all he or she has to do is examine their
tabulations. Instead of being commonplace, these diseases are often very rare
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events and are often due to things other than those of exposure to radioactivity.
For example, if we examine the tabulations for icdxlnr7 or icdx5nr9, both of
which are varicose veins, we observe that only seven of the female respondents
report varicose veins and only two of those report them in their legs.

79 Table 9 Tabulations varicose veins reported by female respondents 79

icdxInr==45 4 varicose veins Freq. Percent Cum. 1235 0 343 98.00 98.00 1
7 2.00 100.00 1235 Total 350 100.00

icdxbnr==va ricose veins in legs Freq. Percent Cum. 1235 0 361 99.45
99.45 1 2 0.55 100.00 1235 Total 363 100.00
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79 Table 10 Prevalence of Strokes reported by female respondents 79 icdx4nr==43

4.91 crbrl art ocl nos w infarc Freq. Percent Cum. 1235 0 361 99.45 99.45
1 2 0.55 100.00 1235 Total 363 100.00 The prevalence of stroke,(icdx4nr9),

is also rare, with only two women suffering from it. However, the fact that
the signs are negative suggest that the correlation with the Chornobyl related
health threat with respect to these problems happens to be negative, with ra-
tio of standard deviations of that of the y to that of the x in the independent
variable, contributing to the size of the parameter estimate.

The parameter estimate details for the above model are found in Table 11
on the next page. We will then examine a factor analysis of those explanatory
variables selected for the female model. As before, because some of these vari-
ables are dichotomous in coding, and therefore not continuous, as is required
by conventional factor analysis, we use a polychoric correlation matrix, which
assumes an underlying normal distribution which is normalized to a quantity
of one. Where the cut is made in that normal distribution allows the proper
percentages of probability to reside on each side of the cut, representing the two
percentages of area under the curve.

Moreover, we switch from a canonical decomposition of the full variance to
one of the common variance when we shift from a principal components analysis
to a factor analysis. However, this shift merely separates out the uniquenesses
from the total variance, and then proceeds conventionally with the analysis of
choice.

As we did before, we noticed residual heterogeneity in the model. By ap-
plying the Newey-West standard errors, we asymptotically attenuate the effects
of that heterogeneity in addition to control for autocorrelation when more than
one wave is included in the model.

Furthermore, AutoMetrics attenuates both of these biases with a wide- for-
matted file that permits an relatively easy movement of the variables into the
principal components and subsequent factor analysis. This transition is not al-
ways as seamless as we would like. The varying sample size of the constituent
variables in the correlation matrix as well as a row or column of nonsignificant
correlations often generates sum of squares and cross -products matrix that is
not of full-rank, a non-positive semi- definite correlation matrix, which is con-
ventionally noninvertible, and therefore not amenable to regression based factor
score generation. To generate an invertible correlation matrix, some of the vari-
ables responsible for generating nonsignificant rows or columns of correlations
in the matrix have to be pruned from the model.In short, we often have to rely
on the correlation of a trimmed model in order to complete our factor analysis.
The full model shown in Table 11 has to be shorn of the icd9 codes and those
earning a Ph.D. (edu7) before an input matrix of full rank is attained.

79 Table 11 Full Female model for radfmw1 with basis function bf10 79 EQ(
4) Modeling radfmw1 by OLS-CS The dataset is: /Users/robertyaffee/Documents/data/research/chwk/
phase3/data/ox/chwide28apr2012femmesold.dta The estimation sample is: 97
- 363 Dropped 5 observation(s) with missing values from the sample
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Coefficient Std.Error HACSE t-HACSE t-prob Part.R%icdz1nr7—38.223411.9710.18—
3.750.00020.0530edu789.181626.532.44436.50.00000.8409aborw15.409191.6481.2224.430.00000.0722pol prw10.2!
57.112526.925.997—9.520.00000.264 7icdxd5nr9—36.983726.483.210—11.50.00000.3450b £ 101.347640.45120.13271

sigma 26.3257 RSS 174646.747 log-likelihood -1223.55 no. of observations
262 no. of parameters 10 mean(radfmwl) 59.4542 se(radfmwl) 34.8081 When
the log-likelihood constant is NOT included: AIC 6.57851 SC 6.71471 HQ
6.63325 FPE 719.495 When the log-likelihood constant is included: AIC 9.41639
SC 9.55259 HQ 9.47113 FPE 12288.6

Normality test: Chi?(2) = 0.41023[0.8146] Heterotest : F(12,246) = 2.2322[0.0110]*
Hetero — Xtest : F(22,236) = 1.9921[0.0065] * « RESET23test : F(2,250) =
0.79036[0.4548)

To attain an invertible matrix, we are compelled to drop some variables-such
as, icdx1nr7, woman, icdx4nr9 icdx5nr9 and edu7 —leaving us with a polychoric
correlation matrix of correlations among those variables that we can decompose
into an eigenvalue- eigenvector configuration, shown panels of Table 12. The
rotated factor structure is shown in the following Table on the next page.
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79 Table 12 Polychoric correlation matrix 79 . polychoricpca aborwl polprwl
HP2vacatn bfl0 Polychoric correlation matrix aborwl polprwl HP2vacatn

bf10 aborwl 1 polprwl .35603606 1 HP2vacatn -.13932273 -.02433289 1 bf10 -
.34468496 -.52405491 .05788011 1 Principal component analysis k Eigenvalues

Proportion explained Cum. explained 4152418 1 1.840301 0.460075 0.460075
2 1.008726 0.252182 0.712257 3 0.676746 0.169186 0.881443 4 0.474227
0.118557 1.000000 . matrix define pcorr=r(R) . factormat pcorr, n(340) fac-

tors(2) (obs=340) Factor analysis/correlation Number of obs = 340 Method:

principal factors Retained factors = 2 Rotation: (unrotated) Number of params
= 6 1360 Factor Eigenvalue Difference Proportion Cumulative 1360 Factorl
1.11022 1.04352 1.3692 1.3692 Factor2 0.06670 0.21066 0.0823 1.4515 Factor3
-0.14396 0.07816 -0.1775 1.2739 Factord -0.22212 . -0.2739 1.0000 1360 LR
test: independent vs. saturated: chi2(6) = 174.97 Prob;chi2 = 0.0000 Factor
loadings (pattern matrix) and unique variances 132014 Variable Factorl Fac-

tor2 Uniqueness 132014 aborwl 0.5039 -0.1049 0.7350 polprwl 0.6518 0.0714
0.5701 HP2vacatn -0.1134 0.2197 0.9389 bf10 -0.6470 -0.0482 0.5790 132014
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Table 13 reveals that only one factor emerges from this analysis with clear
definition. The variables loading highly onto it are those pertaining to a belief
that political problems have lead to a dangerous situation, a belief in family
support (bf10) associated with reduced the danger posed to the family, with an
amelioration of the health threat to the family, and having an abortion in 1986.
A second factor is not well defined and can be disregarded, as its loadings are
smaller in magnitude than 0.40.

79 Table 13 Rotated factor analysis for females in wave one (1986) 79 . ro-
tate, blanks(.36) Factor analysis/correlation Number of obs = 340 Method:

principal factors Retained factors = 2 Rotation: orthogonal varimax (Kaiser
off) Number of params = 6 1360 Factor Variance Difference Proportion Cu-

mulative 1360 Factorl 1.08400 0.99107 1.3369 1.3369 Factor2 0.09293 . 0.1146
1.4515 1360 LR test: independent vs. saturated: chi2(6) = 174.97 Probychi2 =
0.0000 Rotated factor loadings (pattern matrix) and unique variances 132014

Variable Factorl Factor2 Uniqueness 132014 aborwl 0.4809 0.7350 polprwl
0.6548 0.5701 HP2vacatn 0.9389 bf10 -0.6465 0.5790 132014 (blanks represent
abs(loading);.36)

Before beginning our comparison of the factor structure of the various mod-
els, we should examine the cumulative models for waves 1 and 2, and then for
waves 1, 2, and 3.
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3 Models for waves 1 and 2

We continue to use that criterion of variable selection. Meanwhile, we retain all
of the basis functions relevant to waves 1 and 2 and drop the raions, owing to
the sparse data in some and the consequent multicollinearity that arises due to
too many with a small sample, we obtain the following AutoMetrics model, until
we decide which raions we will aggregate in order to have the proper sample
size for an analysis of them.

3.1 Male Radfmw2 model for waves 1 and 2 with basis
functions input

We begin this section by examining the cumulative male model for waves 1 and
2 using radfmw?2 as a dependent variable. Although basis functions were used
in the input to this model, they were not selected for the ultimate model.For
the male perception of Chornobyl related family threat over waves 1 and 2, the
general focus appears to have been on overexposure to ionizing radiation. Auto-
Metrics selected for optimal explanatory variables for the male model including
both waves one and two the following variables:

79 Table 14 Male Waves 1 and 2 Variable index for the male reports of
Chornobyl related health threat to the family 79 variable name type format
label variable label 79 carcin double a person exposed to carcinogen is likely to
get cancer (% of agreement) edud double some college edu8 double M.D. hospw1
double number of days per year as a patient in a clinic for medical condition in
1976- defnw2 double consider hazardous (in percent) - deficiencies in essential
nutrition in 1996 radwl double believed % of the radioactively contaminated
area in 1986 radchw2 double believed % of polution related to chornobyl in
1996 radfmwl double how much believed family health is affected by radia-
tion in 1986 cloud double radioactive fallout is only harmful when visible (% of
agreement) CSprbslv double Coping Problem Solving Subscale BSIhos double
Basic symptom invenstory hostility subscale icdx1nrl double icdx1lnr==218.9
uterine leimyoma nec icdx4nr2 double icdx4nr==thyrotoxicosis icdx4nr6 double
icdx4nr==hypertension icdx4nr8 double icdx4nr==angina pectoris icdx5nrb
double icdxbnr==hypertension 79

For the male perception of Chornobyl related family threat over waves 1 and
2, the focus seems to have been on the dangers posed by exposure to ionizing
radiation. The male model could be expressed as partial adjustment model with
a lagged endogenous variable.

Eque :Radfmw2y = 0.532radfmwl + 0.128carcin — 8.187edud + 30.07edu8 + 0.089hospw1

+0.219de fnw2 — .115radwl 4 .106radchw2 + .115cloud — .379C Sprbsiv

+2.212BSThos — 55.282(uterineleimyoma) + 21.112(thyrotoxicosis)
+48.469(hypertension) — 74.257(otherhypertension) + e; (3)

79 Table 15 Male radfmw2 model for waves one and two with basis functions
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