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Importance of spatial analysis

When psychological symptoms exhibit geographical distributions, a study of the
spatial distributions may be crucial to understanding the nature of an important
problem.

Real or perceived exposure to toxic disaster may lead to a distribution of relative
risk of particular psychosocial problems. The study of the spatial manifestations
of these symptoms can help policy planners design mental health programs to
help the people afflicted. Spatial analysis of diseases may be informative and
important for epidemiologists; distribution of chronically disabled and the
mentally ill for psychologists; crime hot spot analysis for criminologists; areas of
substance abuse for social workers; resource deposits for miners, prospectors
and investors; political affiliation or alignment for political scientists, as well as
pollution concentration and post-disaster sequelae analysis for public health
policy planners .



e Spatial patterns of post traumatic stress syndrome may
reflect geographical proximity to an event or inter-area
distance differences in variables under consideration.

e Distribution patterns may be random, regular, or
clustered.

* Therefore, thematic mapping of local case counts,
dependency (spatial autocorrelation) patterns or
incidence clusters of symptoms may reveal important
relationships that explain real and/or perceived risk of
exposure to a major toxic disaster.



Objectives

Primary Objective: We propose an examination of spatial patterns of
physical and psychological symptomatology, along with their
interactions. For these consideration have for the most part been

ignored.

More specifically: We intend to examine counts per unit area of post-
traumatic stress, depression, anxiety, other psychological symptoms
potentially related to Chornobyl radiation exposure and relevant lifestyle
factors. We will endeavor to examine the counts per unit area of
reported physical illnesses there as well. We will look for interactions
between them. We sincerely hope the findings of our research can
substantially help all concerned.



Objectives—cont’d.

 We expect to find patterns of spatial dependence
(correlation and/or autocorrelation) between
observations at different locations, derived from the
relative position (distance or arrangement) of
observations in geographic space (Anselin, Spatial
Econometrics, p.1).

* We expect to observe meaningful clustering (perhaps
even hot spots) among these patterns of dependence
of psycho-social symptomatology, radiation absorption
and exposure that will inform our understanding of the
nature of the problem.



Outline

1. We define our key organizing concepts to examine marked
point patterns of psychosocial symptomalogical incidence.

Population distribution

Disease count

Incidence rates

Expected counts

Standardized morbidity/mortality rates
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Relative risk

2. We explain problems with classical frequentist application
of the normal distribution for this analysis.

1. Nonnormal distribution or counts or rare events



Outline — cont’d.

3. The Basic Poisson Model for counts or rare events

1. We will determine patterns and levels of random
distribution

2. Assumptions of the model
3. The problem of overdispersion
4. Bayesian analysis and the Negative binomial Model
Essential Bayesian Analysis
The negative binomial (Poisson-gamma) model
The estimation process
Cluster and Hot spot detection
Goodness of fit
Residual Analysis
A thematic or choropleth map
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Population distribution

* Suppose our unit of geographical subdivision is the raion.
* From the latest census, we obtain the population count for

the raion.

N
population density = population/area = Zni
=1

where
n = population
| = raion or unit of geographical area



A disease or symptom count

e We know that the incidence of a disease or

psychopathogical symptom is measured in the case
(as distinguished from control ) count of disease.

e We examine the disease count for the unit of
geographical area.

. . I
total disease count perraion= ) . O,
where
| = raion

O. = observed cases of disease per raion



A Crude measure of disease
distribution is the Incidence rate

Incidence rate (IR)= S

i
where
O | = observed casesinraioni

n. = number of populationinraion I

An incident rate is a measure of absolute risk, while the
ratio of two incident rates is a measure of relative risk.
If we took the ratio of the incident rate of a raion and

divided it by the incident rate of the oblast, we would
have the relative risk.
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Spatially Random disease distribution
provides the expected count (e;)

e We obtain the incidence rate for each raion.

 We obtain the average, mode, and median disease count in

each raion. mean(IR) for study area

N

>0

_ i=1
6 = H—

2N

i=1
where

e. = mean incidence rate of country

We can form confidence intervals, if we assume normality, around these
means.

Alternatively, we can obtain confidence intervals from bootstrapping the
local empirical standard errors within each raion.



Other sources of Expected counts

May come from National Centers for health
statistics

May come from National Health Departments
or Centers for Disease Control databases.

May come from actuarial tables

May come from national counts stratifed by
age and gender.



Standard Morbidity/Mortality rate
(SMR)

where

e

0. = estimated relative risk
| = geographical area unit (raion)
= expected countinraion

ei
0, = observed count in raion



Relative risk

* This ratio of observed to expected counts
within a unit of area describes the relative
risk of the geographical unit. This is the odds
of being a case over the odds of the
background case rate.

Relative Risk within area i =@ =—¢
where
e, = expected normal or background incidence rate

0. = observed incidence ratein geographic unit of area



SMR Issues

e Ratio estimators can become inflated with
small denominators of expected counts.

* This can give rise to noise and outliers.

 Smoothing can be done with kernel regression
(Nadaraya-Watson) or generalized additive
models (if covariates come in handy to
facilitate smoothing—Kelsall and Diggle).



Basic Poisson Model for Counts or

Rare events
0. ~ Poisson(e&)

where
6, = relative risk (odds ratio of observed IR to expected IR)

In(0) = Gy + BiX+ ..+ IBpo

0 =exp( B, + BXx+..+ B X))



Poisson probability

The
probability of observed
count o ini" area unit
_ e (Ge)

o!
assuming that mean =variance,

and A (the relative risk) Is fixed. By using 8 we can

allowd tovary o between raions.



Inappropriateness of the Normal
Distribution

Normal distribution

But psychosocial abnormalities are not distributed as such. They
tend to have long tails on the right ( high positive skew). The use of
such a distribution will lead to inaccurate assessment and inflated

standard errors.



Model assumptions
(Lawson et al, 2003).

* Individuals within the study population
behave independently with regard to
propensity to disease, after controlling for
relative and confounding variables.

* The at-risk background intensity is has a
continuous and random spatial distribution
within a specified background.

e Case-events are occur as singly spatially
separate phenomena.



A Marked Point Process

 Each case is geo-coded, in that a latitude and
longitude, for the location of residence, is
recorded in the dataset as a marked point on a
map. In this way, the different symptomatology
can be graphed on a map.

* The count of cases is a measure of a count.
Counts are generally approximated with the use
of a poisson distribution.

* Poisson processes can also approximate rare
case counts-- when the area is large and the case
counts are small.



Congenital abnormality deaths in
counties of South Carolina in1990
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The Poisson process for counts and
rare events

* The number of cases of a disease can be
modeled as poisson process.
0. = Poisson(&.e)
where
0. = observed count for area unit |

6, = relative risk(ratio of incidence rates)

e. = expected count for area unit



Poisson Fixed effects model

‘9i — exp(bo + blxli T b2X2i +ei)
=exp(X.B+e)
In(6,) =b, + b x; +b,X, +¢€

Where
O.= relative risk of geographical area i
b, = common level of rate over study region from i=1 to m

(maximum number of geographical area units under study)
x,=easting (longitude )of area unit centroid

X,;=northing (latitude) of area unit centroid

Xi= mxp matrix of covariates

B= px1 parameter estimate vector



Assumptions of the Poisson model

e The mean= variance

e That all effects included in the model
determine the excess risk surface.



The Problem of Overdispersion

When the variance > mean, overdispersion occurs.

Overdispersion may come from clustering of the
counts at a particular scale.

This may come from sparse data and low expectation
per unit of area.

This may come from variations in frailty of the
individuals—that is, susceptibility to the disease or
symptom under consideration.

Violation of the dispersion assumption invalidates use
of the Poisson model.

We relax the assumption of the mean=variance with
Bayesian analysis.
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Why Bayesian Analysis?

Bayesian analysis tells us how to update prior beliefs in light
of evidence (Jackman, S. Yale, 4/23/04)

Any model estimable by maximum likelihood can be
estimated by Bayesian simulation .

Bayesian simulation permits us to handle models and data too
difficult for maximum likelihood.

Data sets with nonnormal data (using other distributions to
model them)

We get more accurate estimates with smaller confidence
intervals (called credible intervals by Bayesians).
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Bayes’s Rule of Conditional Probability

Consider parameter @ and data V.

POlY)= Péf’yi)

Therefore, P(8]y)P(y)= P(6,y)
This can be re—expressed as
P(0,y)=p(0)p(y|0)
where p(@) = prior distribution
and p(y|&)=sampling (data) distribution
The sampling distribution is called the likelihood
P(@]y)P(y)
So P(@|y)= P(y)
Similarly, p(y[8) o« p(@)p(y|6)
f(yl0) < T(0)f(y|0)




Bayesian Analysis

* A posterior (predictive distribution) is proportional to

a prior distribution times a likelihood

Posterior o Prior*Likelihood
p(@|data) o« p(g)* f(data|b)



How do we combine the prior with the
data

 We pool them by forming a weighted average
e Suppose the posterior can be re-arranged to yield

oly ~ N(u,7°)
where
1 n _
oMt
7, o) : :
H=—7" IS a weighted average
2t 2



The averaging is weighted by the
precision of the samples

r*total precision

PR . n .
= 7, prior precision + — data precision

because Var(@|y)= 1

1 1
2t 2

O 7o

Guido Imben’s 2007 Summer Institute Lecture on Bayesian
Inference at the National Bureau of Economic Research in
the “What’s new in Econometrics” series.



Bayesian combination of normal prior
and normal likelihood

0~ N(u,z°) prior

Y |0~ N(8,0°) likelihood (data| prior)

The posterior distribution has mean and variance:
E@|Y)=au+(1-a)Y

Var(@|Y)=(1-a)o’

where
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Bayesian shrinkage

We postulate that 0<a <1.

The posterior mean is a weighted average of the prior
mean, Y, and the direct estimate Y; the posterior estimate
is shrunk toward the posterior mean.

The a weight of the prior mean, u, depends on the relative
variability of the prior distribution and likelihood.

If 02 is large relative to the prior variance, T, (our prior
knowledge is more precise than the data variance), then B
is close to 1 producing substantial shrinkage.

If 02 is small relative to prior variance, T4, then B is close to
0 and the estimate is moved very little toward the prior
mean.



Combining the Prior and the data to get
the Posterior

Figure from Simon Jackman, Yale Lecture, Day 1.



Bayesian Analysis

* As priors become vague, they become
noninformative, so

p(6)— >c(a constant)

We say that the priors become diffuse, flat, or noninformative.
As this happens Bayesian analysis yields the same results as
maximum likelihood analysis, except that Bayesian analysis can
provide answers when ml cannot.



Inappropriateness of the Closed-form Normal
Distribution for abnormal symptoms

* We specify a normal
likelihood as

f(y]6,0%) =ﬁ¢(yi 16,0%)

_ _ (i-9)?
Hm“p( 2
__Z(yi_‘g)2

oc exp ':1202




A normal distribution does not reflect
the presence of psychopathology

Normal distribution




We use a gamma(r) distribution as a prior distribution

Gamma(«, £) distribution:
aea—le—ﬁﬂ
p(0) =2

['(x)
where
E@)=alp
var(0) = a | j°
['=(n-1)!

0>0,a>0,6>0

By multiplying the gamma by the Poisson likelihood, we obtain a Negative Binomial.

Use of the negative binomial distribution allows us to relax the assumption that the mean must
equal the variance, which is an unrealistic assumption.

With a negative binomial distribution, we have a more flexible model.
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Marginalized Log-Likelihood of the
Negative Binomial model

* From the marginalized LL :

L(c, B) = Z{ln F(roi(;)“) + BIn(a) - (0, + ) In(e + 0{)}



Clayton and Kaldor(1987)
Lawson(2008)

Epoisson (OI) = lui — ei6)i
and
6 ~1'(a, ), then

0 :iZoi +a,
mTe+p
where

m = sample size



Flexible Prior
which we can tune by changing a shape or location
parameter

Gamma with shape = 7

15

Density

.05

gamma?

We can parameterize the Gamma distribution as a 3 parameter
distribution a = shape, b = location, and g = scale

Gammal(a, (x—Db)/g)  Merely, by varying the a, we can control
the shape of the Gamma distribution.



We would like a flexible
prior distribution

Gamma with shape = 1
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Conjugacy

Prior Likelihood Posterior

Normal Normal Normal

Beta Binomial Beta

Gamma Poisson Poisson

Wishart Multivariate Wishart
normal

Exponential Poisson Poisson




Bayesian Analysis of a Negative
Binomial process

Random effects have a prior distribution —such as a
(Ma,B)) distribution. The a and B parameters are
parameters of the prior distribution. Then there are
the data. By a mixture of the prior distribution with
the distribution of the sample (which is a
multiplication if parameters are logged, as they are in
a Poisson process), then we obtain a posterior
distribution



Noninformative Prior distributions

A noninformative prior is may be a uniform or flat prior.

A Jeffrey’s prior is distributed as a Beta(.5,.5) and may be used as a
noninformative prior.

It does not favor one parameter value over any other.

Even if such a prior is used, there will still be shrinkage of the
confidence intervals.

Hence, Bayesian analysis generally yields smaller credible intervals
than classical frequentist confidence intervals.



Sufficient statistics are computed

Sufficient statistics are those which together can define a
distribution. For a normal distribution, sufficient statistics are
the mean and the variance.

From the mean and variance, which are the same in the
Poisson distribution, we can generate the distribution.



Estimation of the
Bayesian Posterior

This is done by repeatedly resampling this combination to obtain he
(probability mass function of) posterior distribution. By repeatedly
resampling a large number of times (which is easy with fast computers)
using a Gibbs sampler (Gelfand and Smith, 1990), we obtain a measure
of the area under the posterior curve.

From this posterior simulation, we can easily obtain a mean and
variance as well as any other sufficient statistics.

Resampling the area under the curve using GIBBS sampling with
Winbugs.

Winbugs (Windows Bayesian estimation using Gibbs Sampling)
by Spiegelhalter et al.(Imperial College of London) was used to
generate the maps of congenital birth defects in South Carolina
shown earlier.
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Markov Chain Monte Carlo Algorithm
for Bayesian Estimation

Gibbs sampler
(Gelfand and Smith, 1990)

“Sequentially sampling parameter values from a Markov chain whose
stationary distribution is exactly the desired joint posterior distribution
of interest(Carlin and Lewis, 120).”



Gibbs Sampler

Carlin and Lewis, 121-122.

Let our model contains k parameters H — (Hl’ ey ek )

“Assume that samples can be generated from each of the
complete conditional distributions”

{p(6,10,,.y) fori=1,..,k} inthe model.

“Under mild [stationary] conditions, the collection of full
conditional distributions uniquely determines the joint
posterior distribution ...”

p(@|y), and hence,
all marginal posterior
distributions, p(é.|y.), 1=1,..k .



Gibbs Sampler -- cont’d

“Given an arbitrary set of starting values” {929 ‘9;?}
Yy )

The algorithm proceeds such that

For (t=1,..., T), repeat:

Step 1: Draw &, from p(6,|6,*,6,....67",y)
Step 2: Draw &, from p(6,|6",6,~,....6,",y)

Step k: Draw 4, from p(6, |6/, 6:7,....,6.1,Y)



Gibbs Sampler-cont’d

Carlin and Lewis, 121-122

What is obtained converges in distribution to a draw of the true joint posterior

distribution.
A histogram provides a simulated-consistent estimator of the marginal distribution.

In practice we run 3 to 5 chains of these processes simultaneously to assess
sampler convergence, discarding all samples from the burn in period.

é(«9i|y)= zz

tb|) j=1t= thia

where

m = number of chains

T =total number of obs

t.. =number of obs in burn—in period

This reduces the autocorrelation bias in the estimation of the posterior mean and
variance.



Bayesian updating

The process of obtaining a posterior distribution from a prior and a
likelihood is called an Bayesian updating.

One updating may be for a former updating. This is called Sequential
Updating.

In this case, the earlier distribution is called a hyper distribution with
hyperparameters.



How do we identify psycho-social
symptom clusters

* We can develop and intensity function of the

incidence rate (per capita) in each raion.

When the disease density exceeds the confidence
intervals around the average in each raion, which
would indicate random normal spatial
heterogeneity, we are able to plot this and
measure the disease clustering.

We may plot ranges of the intensity function on a
thematic or Choropleth (a shaded or color coded)
map indicating gradations in the quantile of the

spatially distributed variable under consideration.
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Intensity Function

Intensity A(s) = number of events expected within a unit area s

A(S) integrates to an overall mean number of events per
unit area

) 3 (, ls—sIF)
A8)= ). — (1 = )

[Is—s;lI<b

where
b = bandwidth size (distance)
s = svector of grid of locations defining the study area



Cluster detection

Any bounded area of elevated risk is a spatial cluster.

Any area displaying unusual or excess risk is called a “hot spot.”
Only adjacent areas can be together called a cluster.
Sometimes correlated heterogeneity may be called a cluster.

InaIn(®@)=a+e(i), the aisthe smooth part of the model,
whereas the e(i) is the residual. Residuals may be decomposed
into correlated (clustered) and uncorrelated. Analysis of the
residuals may indicate spatial patterns of elevated correlation and
risk, that are useful.

If the relative risk of the posterior distribution exceeds a critical
threshold in a particular area, that could be deemed a cluster.
(Lawson, 2008, Chapter 6).
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Kriging

To map the area between the points, ordinary kriging, a form of spatial
interpolation is performed.

Without going into a lot of detail, ordinary kriging is a weighted average
of neighboring data to generate a linear prediction of an unknown data
value.



Thematic (Choropleth) Map

* These maps will reveal patterns of diffusion or spatial
relationships. The intensity function may be divided
according to quantiles and the different disease

densities may be shaded or colored to represent
them.

* Choropleth maps are thematic maps that display
these gradations.

* See next two pages for an example.



Thematic Map
generated from a Normal Prior

[samplesimeans for theta . B1¢ 099

. . (187 089- 1.0

[ D (141 1.0 o
D s 1m 1.02
. @y o1.02- 103
. o)

1.03 - 1.04
. ()= 1.04

200 .0km

There is no clear pattern here—only a spatial cluster in one county.
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Choropleth map depicting levels of congenital abnormality
deaths in terms of SMR in 1990. Map generated from a

Gamma Prior.

.5 (samples)means for theta

(samplesimeans for theta

200, 0km

Fa >
% *

Here we can see a pattern of higher risk in the central

counties as well as some in the west .

1.0

1.01

1.0%

1.02

1.04
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Other spatial autoregression models
SAR: simultaneous autoregressive models
CAR: conditional autoregressive models

V() =x(s) A+ Dbye(s)+V(s,)

b, = spatial dependence parameters

These models express the SMR as a function of
a set of fixed covariates and the error
correlation among neighbors

Waller and Gotway, 363.



Space time analysis suggested by Bernardinelli et al.(1995)

In(6) =a+u. +v. + ft, +0. *t,
where
[ = parameter estimate of time trend t,

o. *t_ =Interaction random effect between space and time



Goodness of Fit

Bayesian Information Criterion

BIC =-2In Likelthood + 2pIn(T)
p =number of parameters
T =number of observations

Avg LL for G posterior estimates

1 G
ALL ==>"LL,
G



Residual Analysis

Lawson et al. (2003)(notes that we can analyze
residuals for lack of systematic pattern to diagnose
our model

general residual

~

I =05 — 0y

standardized residual

~

Oli B 01'

I’-si = ~
\/ Var(oli — 0y )

Bayesian residual (Carlin and Lewis,1996)
G
h== > E@16)
G i

where
G =number of posterior samples



Recapitulation

We have argued that Bayesian methods may be
more amenable to analyzing nonnormal samples
than classical methods.

We have shown that Bayesian methods, combined
with the new computer power, permit estimation of
sample distributions without closed form that
conventional methods cannot.

We have shown that by using these methods, we can
relax over constricting assumptions that lead to faulty
assessment.

We have used these methods to analyze counts and
possibly rare events with greater precision than
conventional methods.

We use these methods to map psychopathological
symptomatology that are generally nonnormally
distributed.



Implications

When working with skewed or nonnormal distributions, we are
better able to assess these populations with a Bayesian approach.

We obtain more accurate assessments if we have an idea of what
the prior distribution looks like and we know what conjugate
distributions may be used as that prior.

If we don’t know what the prior distribution appears to be we can
use a diffuse prior and still get a good estimate.

We do this by shrinking our confidence intervals and getting more
accurate estimates.

This approach may be helpful for disease or symptomalogical
mapping to help us appreciate the nature of perceived risk to a
toxic catastrophe.



References

Anselin, L. (2006). Spatial Econometrics, in (Mills, T. and Patterson, K, eds),
Palgrave Handbook of Econometrics, (1),902-970.

Carlin, B. and Lewis, T. (2008) Bayesian Methods for Data Analysis. 3" Ed.,
Chapman and Hall, 121.

Chandraskaran, K. and Arivarignan, G. (2006). Disease mapping using
Mixture Distributions, Indian Journal of Medical Res. Vol. 123, 788-798.

Jackman, S. (2004). Bayesian Modeling, Yale University (March 23, 2004).

Lawson, A. B., Browne, W. J., Videl Rodiero, C. L. (2003). Bayesian Disease
Mapping with Winbugs and Mlwin. New York: Wiley, 1-75.

Lawson, A. B. (2008). Bayesian Disease Mapping: Hierarchical Modeling in
Spatial Epidemiology. Chapman Hall, 117-188, chapter 6.

Ma, H.Virnig, B.A., and Carlin, B.P. (2005) Spatial Methods in Geographic
Administrative Data Analysis.

Messner, S. and Anselin, L. “General Methodological Issues with the
Analysis of areal data, section three of Spatial analysis of homicide rates
with areal data.



