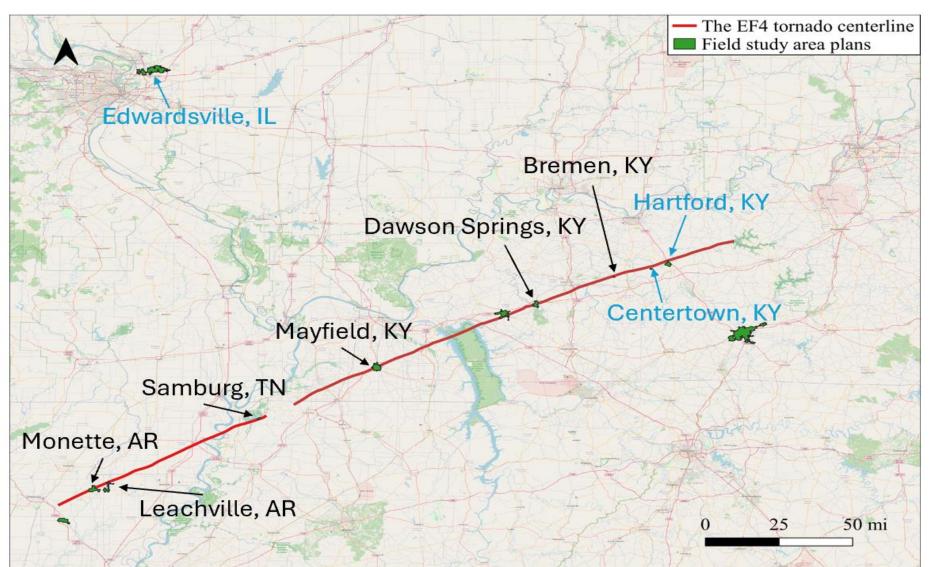


Tornado Outbreak


Tornado hazard (December 10-11, 2021)

- Quad-State Tornado
- \$3.9 billion (2022 USD) in damages
- More than 90 fatalities and at least 667 people injured
- 2 EF4, 6 EF3, 15 EF2, 30 EF1, and 17 EF0 tornadoes
- The high-end EF4 tornado had a path length of 266.67 km (165.7 miles), a maximum width of 1.82 km (1.13 miles), and a peak wind speed of 84.94 m/s (190 mph)
- A team of 11 researchers developed a plan to launch a longitudinal field study in the impacted area

Community Selection

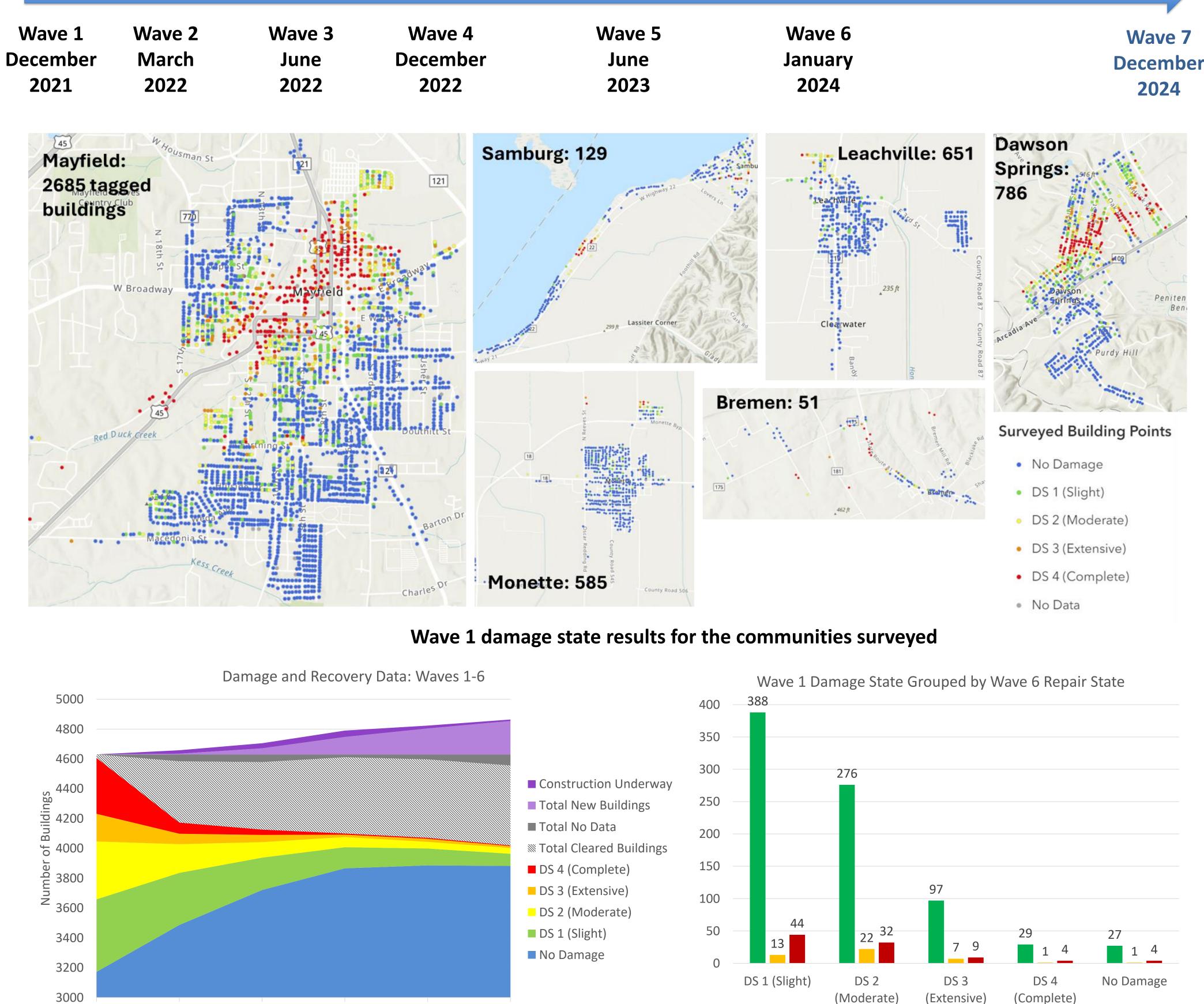
Social susceptibility driven considering long-term outcomes for median household income, population, number of households, number of housing units, and educational attainment.

The communities surveyed in the field study Metric implementation to select communities

Town of Interest	Social Susceptibility Metric	Social SusceptibilityTier	Predicted Outcome for Monitoring Factors Based on Social Susceptibility	Qualitative Extent of Damage
Leachville, AR	0.895	Very Low Social Susceptibility	Marked Stability	Low
Edwardsville, IL	1.587	Very Low Social Susceptibility	Marked Stability	Very Low
Samburg, TN	3.470	Low Social Susceptibility	Stability	High
Mayfield, KY (Graves County)	5.101	High Social Susceptibility	Decline	*
Bremen, KY	5.395	Very High Social Susceptibility	Marked Decline	Moderate
Mayfield, KY	5.847	Very High Social Susceptibility	Marked Decline	Very High
Monette, AR	6.081	Very High Social Susceptibility	Marked Decline	Very Low
Centertown, KY	6.957	Very High Social Susceptibility	Marked Decline	Very Low
Hartford, KY	8.265	Very High Social Susceptibility	Marked Decline	Low
Dawson Springs, KY	8.453	Very High Social Susceptibility	Marked Decline	High

The Role of Interdisciplinary Field Studies in Fortifying Structural **Recovery Modeling**

Blythe Johnston, John W. van de Lindt, Lisa Wang, and Shane Crawford


Key Objectives

Document initial damage in a set of communities simultaneously impacted by the tornado outbreak using both IN-CORE **Damage State tiers and EF-Scale Degree of** Damage tiers to develop robust mapping between metrics.

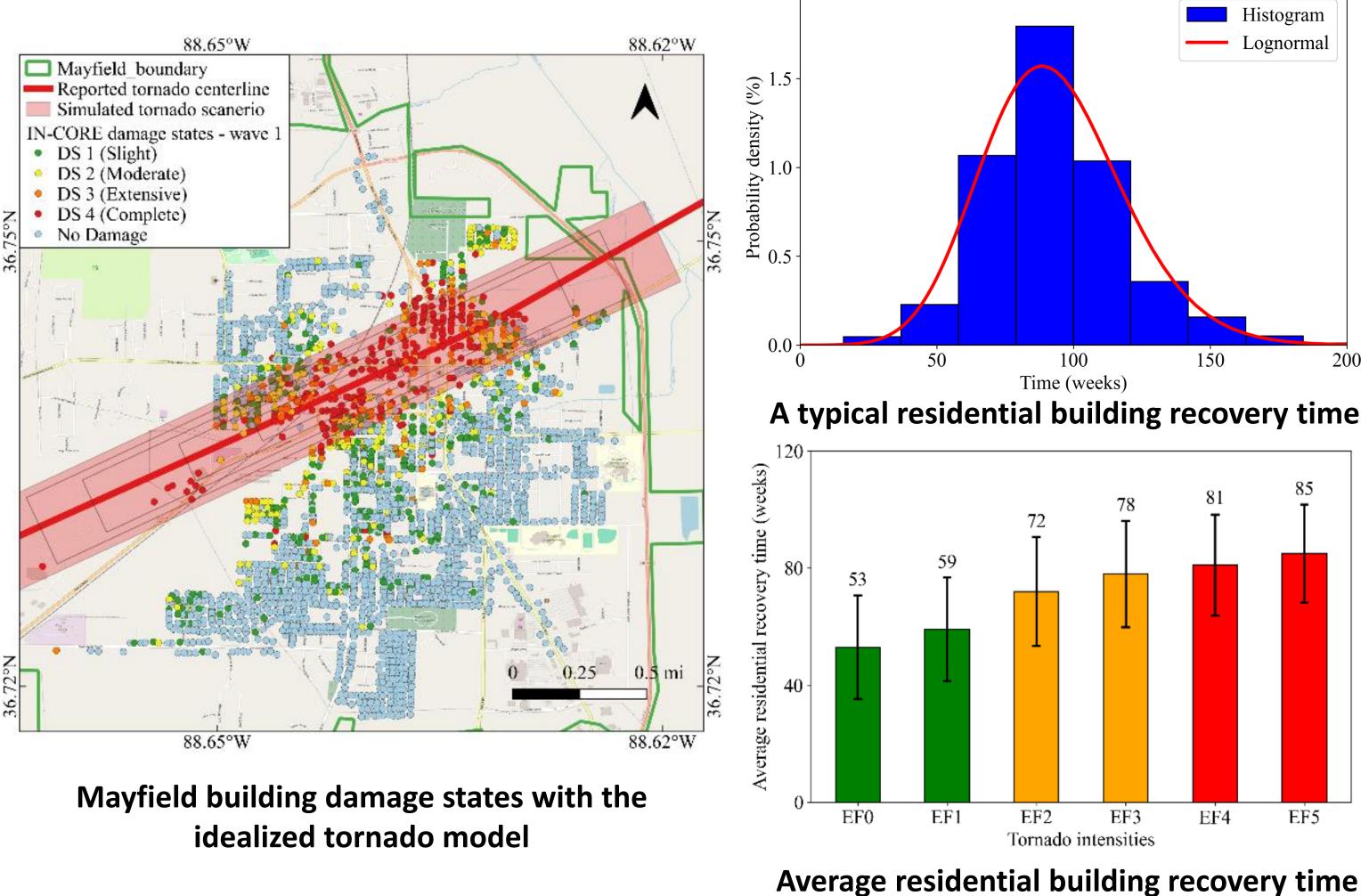
Data Collection, Data Processing, and Data Visualization

- Passive, vehicle-mounted, 360° video data
- Extreme Events Web Viewer (EEWV) for long-term preservation, processing, and data attribution

		Damage and	Recovery D	ata: Waves 1-6	5						
5000							400				
4800							350				
4600							300				
_{ടമ} 4400						 Construction Underway Total New Buildings 	250				
Number of Buildings 3800 3000						Total No Data	200				
jo 4000						Total Cleared Buildings					
ad m 3800						DS 4 (Complete)DS 3 (Extensive)	150				
ุ ุ ₃₆₀₀						DS 2 (Moderate)	100				
3400						DS 1 (Slight)	50				
3200						No Damage	0				
3000											
	1 2	3	4	5	6						
	Wave Number										

Damage states across waves

Track recovery of the building stock in these communities in the form of both repairs and reconstructions.


Compile results to augment public data repositories and to help in validating generalizable damage and recovery models.

RS1: Fully Repaired RS2: Repairs Underway RS3: No Repairs Underway

- Environment).
- various natural hazards.

Community Resilience Model Validation

- to delay and repair.
- current recovery model.

• Johnston, B., Wang, W., van de Lindt, J. W., Crawford, S., Harati, M., Skakel, K., Dao, T., Yan, G., Do T., Umeike, R., Croope, S., Nguyen T., and Barbosa, A., 2024. "Interdisciplinary data collection for empirical community-level recovery modelling." IABSE Symposium Manchester 2024. 10.2749/manchester.2024.1260.

- https://doi.org/10.1111/risa.14284

What is IN-CORE?

• The CoE, funded by the National Institute of Standards Technology (NIST), developed a multidisciplinary computational environment that models natural hazard impacts and resilience planning called IN-CORE (Interdependent Networked Community Resilience modeling

• This open-source computational environment is designed to integrate physical infrastructure with socio-economic systems and to perform community resilience assessment affected by

Scan here to see the IN-CORE manual and example analyses!

• The recovery model is a two-step recovery process prediction: functional downtime due

• Another building cleared and reconstruction case will soon be incorporated into the

References

• Wang, W.L., van de Lindt, J.W., Johnston, B., Crawford, P.S., Yan, G., Dao, T., Do, T., Skakel, K., Harati, M., Nguyen, T. and Umeike, R., 2024. Application of Multidisciplinary Community Resilience Modeling to Reduce Disaster Risk: Building Back Better. Journal of Performance of Constructed Facilities, 38(3), p.04024012.

• Johnston, B., & van de Lindt, J. (2024). Weighing structural damage and social susceptibility: A decision-making tool to perform longitudinal studies of geographically large hazard events. *Risk Analysis*.

Acknowledgments

