

## Impact of Climate Change on Agriculture: An Exploratory Study in Bangladesh

Afsana Kona, Muhammad Awfa Islam Virginia Tech

## Background

- The global impact of climate change is now more apparent than ever
- Changes in precipitation and temperature regimes, coupled with depleting groundwater, pose substantial threats to food security in different communities and regions worldwide
- Consequently, any benefits of the growth and developments in agricultural sectors of the developing countries are attenuated due to the slippery slope effect of groundwater loss, exacerbated by climate change
- This study aims to understand the perceived impacts of climate change in one of the drought-prone areas in Bangladesh

## **Guiding Research Questions**

- 1. What are the perceived impacts of climate change among farmers?
- 2. How does this climate change affect cropping patterns and people's adaptive behaviors?

#### Methods

- The study adopted a qualitative methodology
- The primary source of information for this study comprised 50 indepth interviews (IDI), 10 case studies, 05 key informant interviews (KII), and 04 focus group discussions
- Participants were selected via purposeful sampling
- The respondents of the IDIs were primarily marginal farmers to medium farmers, agricultural laborers, as well as deep tube-well operators from the study areas. The laborers were mostly females and members of the Santal tribe, the largest ethnic group in the northern part of Bangladesh
- Focus group discussions (FGDs) were conducted with the farmers to understand the existing patterns and changes in cropping due to climate change

# Agriculture must adapt to climate change

Our food security, farmers' survival are at stake



## **Key Findings**

#### **Effects of Climate Change**

- Erratic rainfall and extreme temperature
- Farmers' overreliance on groundwater is caused by the ongoing climate crisis, making it a double-edged sword where marginalized and small farmers are forced to irrigate their lands in a way that is highly unsustainable
- Groundwater depletion due to overreliance on groundwater
- Made irrigation highly expensive for farmers

#### Impact of Climate Change on Cropping Pattern

| <b>Previous Crop</b> | <b>Adopted Crop</b> | Reason for Change |
|----------------------|---------------------|-------------------|
| Aman rice (rain-fed) | Sugarcane leaves    | Need for stable   |
|                      | fields barren and   | yield, Reduced    |
|                      | unproductive        | rainfall          |
| Boro rice (high      | Vegetables          | Lower water       |
| water-demanding)     | (eggplant, tomato,  | demand, higher    |
|                      | cauliflower)        | market price      |
| Aus rice             | Fruit orchards      | Long-term         |
|                      | (guava, mango,      | investment, less  |
|                      | litchi)             | irrigation needed |

#### **Impacts of Cropping Pattern Changes**

- Agricultural laborers lose jobs because of a lack of experience with a new crop
- Marginal farmers face economic loss (Micro impact)
- The price of rice will become higher as the price of irrigation increases
- Farmers are forced to substitute their primary crop (rice), which is also their staple food, which may affect the area's food security

### **Policy Suggestions**

- Prevent over-extraction of groundwater
- Develop specific programs for supporting marginalized farmers (credit scheme, subsidy)
- Support localized, participatory adaptation planning



#### References

Abdullah, A. Y. M., Biswas, R. K., Chowdhury, A. I., & Billah, S. M. (2019). Modeling soil salinity using direct and indirect measurement techniques: A comparative analysis. *Environmental Development*, *29*, 67–80. https://doi.org/10.1016/j.envdev.2018.12.007

Abdullah, A. Y. M., Masrur, A., Adnan, M. S. G., Baky, M. A. A., Hassan, Q. K., & Dewan, A. (2019). Spatio-Temporal Patterns of Land Use/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sensing, 11(7), Article 7. https://doi.org/10.3390/rs11070790