

K. Otsuvama¹, T, Ota², J, Hotta³, Y, Makihara¹, K, Kuma¹, and H, Nakamura¹

Background:

- Heavy rain caused massive flood in 2020 in Kumamoto
- Kumamoto Pref. has implemented Blinded-Flood **Response Desktop drill** with local municipalities

Previous Approach (2021-22)

Pref. Crisis **Management Office**

Prepared intentional impacts first, then created weather conditions

Challenge: The virtual heavy rain is **unrealistic**, making it difficult to share a sense of crisis

Novel Approach (2023-)

Steps of creating Scenario

1. Modified precipitation data from a past event

2. Visualized risks with "Kikikuru"

1-km lattice-mesh risk levels based on the radar/rain gauge analyzed precipitation data

"Kikikuru": a web-based real-time risk maps created by Japan Meteorological Agency: JMA

Intervened in 3 and 3 w/o (n=100) Experiences of the past drills (n = 56)

F-test & Student t-test	Interv.	Contr.	P-value
The timing of issuing the evacuation notice was appropriate	3.29	3.69	0.097*
The scenario could actually happen	4.08	3.59	0.055*
The scenario is close to a damage estimate	3.54	3.00	0.027**
$p < 0.1; \ p < 0.05$			

Key Takeaway

- Past weather events will be used for drills as an evidence-based scenario
- The novel approach contributes to get closer to reality

1. The Univ. of Tokyo; 2. Meteorological Research Institute; 3. Japan Meteorological Agency