
Extreme weather events often cause power grid disruptions 
across the United States, with a 10-fold increase in power 
outages between 1984-2012. Modeling weather-related 
power-outages is challenging due to grid quality, vegetation, 
and weather conditions such as wind, precipitation, etc. 
Limited granular outage data further complicates the 
modeling. In this study, we propose weather-outage models 
based on machine learning algorithms for Orange County in 
Central Florida as a case study. 

We test various models, including Random forest, Gradient 
boosting, Extreme gradient boosting, Artificial neural 
networks, and Long short-term memory using weather 
variables as predictors and the duration of power outage as 
predictand. We also build different ensemble models 
combining different algorithms. 

BACKGROUND METHODOLOGY RESULTS CONCLUSIONS

▪ Out of the tested models, ensemble models show better 
performance compared to single models. 

▪ Stacking classifier performs best among all the tested 
models.

▪ Minor and major outage class prediction is challenging 
because the duration of power outages does not solely 
dependent on the intensity of extreme weather.

▪ Using county level data imposes limitations because the 
gird is not uniform within a county and the same weather 
event likely leads to outages in some areas and not others. 

WAY FORWARD

In the next step, we aim to ingest outage data with higher 
spatial resolution, extend the modelling domain to other 
counties, and integrate social vulnerability data and grid 
characteristics into the modeling framework. The ultimate 
goal is to identify hotspots of weather-related outages 
enabling the development of targeted intervention strategies 
(e.g., placement of PV systems and storage) to improve 
resilience of disadvantaged communities, especially in the 
face of climate change.

Future efforts to improve weather-related power outage 
modeling should:

➢ Consider finer resolution power outage data at census 
tract or zip code levels along with detailed grid 
information.

➢ Leverage NASA night-time imagery (especially Black 
Marble products) as proxy for coarse resolution power 
outage data to identify vulnerable communities.
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Vulnerable and At-Risk Communities from Department of 
Energy under the award no. DE-EE0010418 to The University 
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Eagle-I power outage data, DOI 10.13139/ORNLNCCS 
/1975202 dataset is provided by the U.S. Department of 
Energy, project EAGLE-I under Contract DE-AC05-
00OR22725. 

Power outage data was collected from the Environment for 
the Analysis of Geo Located Energy Information  (EAGLE-I) 
managed by ORNL for the Department of Energy. Data is 
available at the county level from November 2014 to 2022 at 
15-minute intervals providing the number of customers 
experiencing an outage in a county. 

The different weather variables used in this study have 
varying spatial and temporal resolution (see Table 1). All 
datasets were converted to county level spatial resolution and 
daily temporal resolution by through resampling methods to 
obtain homogenous data sets to be used for further 
preprocessing and analysis.

Table 1: Selection of weather variables collected from 
CONUS404, ERA5, and other sources.
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Fig. 1: Workflow adopted in this study, including different weather 
and power outage variables, preprocessing steps, classification 
methods used, and accuracy assessment applied for each method. 
Note that grid information and social vulnerability index were not 
considered for the preliminary results shown here.

Filtering is carried out to distinguish weather-related power outages 
from “other” outages (e.g., minor outages from daily system 
operations). This is done by setting a threshold of customers 
affected and linking outages to severe weather events. Afterwards, 
outage durations are derived and classified into class 0 (no outage), 
class 1 (minor outage with <4-hour duration), and class 2 (major 
outage with >4-hour duration). Data preprocessing also includes 
categorizing predictor variables by applying percentile-based 
thresholds to use for model building. 

Variable Spatial res. Temporal 
res.

Source

Eagle-I County level 15 minutes DOE & ORNL

Precipitation 
(TP, MP)

4*4 km grid Hourly CONUS404

Temperature (T) 4*4 km grid Hourly CONUS404

Wind Speed 
(WS)

4*4 km grid Hourly CONUS404

Soil Moisture 
(SM)

4*4 km grid Hourly CONUS404

Leaf Area Index 
(LAI)

4*4 km grid Hourly CONUS404

Lightning (LIS) -- Count NLDN

CAPE 28 *28 km grid Hourly ERA5

Hurricane Path -- 6 hourly HURDAT

MSL (sea level 
pressure)

28*28 km grid Hourly ERA5

Hail 0.75° × 0.75° Daily NOAA NCEI

Fig. 2: Typical example of a power outage event with multiple 
triggers, impact duration, and recovery duration. Red dotted line 
shows the minimum number of customers affected (above the 
threshold we use to consider it an “event”) and total event duration. 
The impact level represents the maximum number of customers 
affects and separates impact and recovery duration. 
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Fig. 3: Correlation matrix for different predictor variables and the 
target variable. Matrix shows that TP (total prcp), MP (mean 
prcp), wind speed, lightning (LIS), and hail have strong positive 
correlation with the target variable (power outage duration).

Fig. 4: Importance of the top 11 predictor variables used to build 
random forest-based power outage model. Results show that 
precipitation, wind speed, lightning, and hail contribute most.

Table 2: Precision (Pre.), recall (Re.), and F1 scores for extreme 
gradient boosting classifier (yellow), voting classifier (brown), and 
stacking classifier (black). Voting classifier and stacking classifier 
consist of random forest, gradient boosting, and extreme gradient 
boosting models and in stacking classifier logistic regression was 
used as intermediate classification method.

XGBoost classifier Voting classifier Stacking classifier

Class Pre. Re. F1 Pre. Re. F1 Pre. Re. F1

0 0.99 1 0.99 0.99 1 0.99 0.99 1 0.99

1 0.74 0.67 0.7 0.73 0.69 0.71 0.78 0.64 0.7

2 0.72 0.77 0.74 0.72 0.75 0.74 0.71 0.82 0.76

CONTACT

Results show that the best model achieves above 80 percent 
accuracy in identifying diverse power outage classes including no 
outage, minor outage, and major outage events.

MODEL BUILDING

Model building includes selecting appropriate models, training the 
models (including train-test split, regularization), model evaluation 
(precision, recall, F1), model tunning (hyperparameters tunning, 5-
fold cross validation), and building ensemble models (stacking 
classifier, voting classifier). Evaluation metrics such as accuracy score 
provide average scores across outage classes and can be heavily 
affected by model performance for a single class. Hence, we derive 
precision, recall, and F1 scores for each class separately to avoid 
potential bias in the model evaluation. 
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