Resilience of Electric Vehicle Charging Infrastructure During Natural Disasters: Insights from Hurricane Beryl

Diako Abbasi^{*}, Safoura Safari^{*}, Deb Niemeier^{*}, Allison Reilly^{*}, Jiehong Lou^{*}

*Department of Civil and Environmental Engineering, University of Maryland, College Park

Department of Public Policy, University of Maryland, College Park

BACKGROUND AND MOTIVATION

A. JAMES CLARK

- Rapid growth of EV sales introduces challenges for grid operators, policymakers, charging providers, and users under disaster conditions (IEA 2024; Li et al., 2023; Almutairi et al., 2022).
- EV charging infrastructure is vulnerable to hazards such as flooding, power outages, and road blockages, disrupting service availability and limiting emergency mobility during disasters (Essus and Rachunok 2024; Raman, and Peng 2022; Li, Ma, and Mostafavi 2025a).
- Current EV infrastructure planning lacks sufficiency and resilience during disasters, leading to unavailability of charging ports and interrupting emergency mobility (*Babaei and Wong* 2024).
- Understanding spatiotemporal patterns of EV charging behavior during disasters is essential to guide recovery planning and the development of redundant, resilient, and equitable EV charging networks (*Movahedi et al. 2024; Adderly et al. 2018; Feng et al. 2020*).
- Case Study: Examining EV charging usage within Harris County, Texas before, during, and after Hurricane Beryl's landfall on July 8, 2024, capturing disruption and recovery patterns under disaster conditions.

RESEARCH QUESTIONS

- How do EV charging station usage dynamically change across time during a course of a disaster?
- What are the recovery trends of EV charging station usage across spatial scales, and how are spatially clustered stations impacted by disasters?

Data & Methods

- Data Source: Collected 10-minute interval charging port availability data for ~65% of public charging stations in Harris County (April 1 – July 21, 2024).
- Panel Data Structure: Transformed raw data into station-date panel data with daily profiles of available and in-use ports.
- Study Period: April 7-14 was considered as disaster period, while other dates were considered normal situations.
- Station availability status: Charging stations have been categorized as fully offline, partially offline, or fully online during July 7–14 based on at least two hours of unavailability
- Temporal Clustering: Applied k-means clustering to 4-hour averaged z-scores of usage to identify temporal usage patterns.
- Spatial Clustering: Grouped stations into 20 geographic clusters using spatial proximity and cross-referenced with temporal clusters to analyze spatiotemporal patterns of disruption and recovery across Harris County.

Distribution of full outage durations by location tag for fully offline EV charging stations

Results

Temporal usage patterns of EV charging stations during Hurricane Beryl, 2024

Cluster 1 Cluster 2

Geographic distribution of 20 spatial clusters of EV charging stations across Harris County, based on station proximity

Results

Distribution of offline hours for fully

DISCUSSION AND CONCLUSION

- Nearly 75% of EV charging stations experienced operational disruptions during Hurricane Beryl.
- Temporal clustering revealed 1) stability, 2) sustained decline, 3) post-outage rebound, and 4) immediate post-landfall surges in usage.
- Stations at public, visible locations recovered faster than those at residential or lesspublicized sites.
- Cross-referencing spatial clusters with temporal patterns revealed location-specific recovery trajectories, with some areas showing stable usage while others had delayed recovery or contrasting station behaviors nearby.
- Stations in northern and peripheral areas faced more complete outages, while central/southern urban areas displayed mixed statuses, reflecting disparities in grid robustness and recovery prioritization.
- Findings support targeted interventions, such as prioritizing high-use zones for fast charging, backup power, and microgrids while reinforcing underperforming areas to improve resilience and equitable EV charging networks.
- Future Research Needs: Calls for integrating physical damage data, mobility behavior modeling, and multi-event/region analysis to identify resilience patterns and guide equitable infrastructure investments.

REFERENCES

- Essus, Yamil, and Benjamin Rachunok. 2024. "Electric Vehicles Limit Equitable Access to Essential Services during Blackouts." Npj Sustainable Mobility and Transport 1 (1): 1–10. <u>https://doi.org/10.1038/s44333-024-</u>00007-3.
- Feng, Kairui, Ning Lin, Siyuan Xian, and Mikhail V. Chester. 2020. "Can We Evacuate from Hurricanes with Electric Vehicles?" Transportation Research Part D: Transport and Environment 86 (September):102458. https://doi.org/10.1016/t.ud.2020.102458.
- Movahedi, Mohammad, Razieh Khayamim, Juyeong Choi, and Eren Erman Ozguven. 2024. "Network Robustness Analysis of Electric Vehicle Charging Infrastructure during Extreme Weather Conditions: A Case Study of Hurricane Ian," June, 657–68. https://doi.org/10.1061/972078445538.058.
- Raman, Gururaghav, Gurupraanesh Raman, and Jimmy Chih-Hsien Peng. 2022. "Resilience of Urban Public Electric Vehicle Charging Infrastructure to Flooding." Nature Communications <u>13 (1): 3213.</u> https://doi.org/10.1038/41467-022-30848-w.
- Babaei, Mohammad Hossein, and Stephen D. Wong. "Electric vehicles in emergencies and evacuations: a review of resilience and future research directions." *Transportation Letters* (2024): 1-13.
 Adderly, Shawn A., Daria Manukian, Timothy D. Sullivan, and Mun Son. 2018. "Electric Vehicles and Natural
- Disaster Policy Implications.⁺ Energy Policy 112 (January):<u>437–48.</u> https://doi.org/10.1016/i.enpol.2017.09.030. • Li Xiangbeng, Jurwei Ma, and Ali Mostafavi. 2025a. "Anatomy of a Historic Blackout: Decoding
- Spatiotemporal Dynamics of Power Outages and Disparities during Hurricane Beryl." International Journal of Disaster Risk Reduction 125 (July):105574.
- Almutairi, Abdulaziz. 2022. "Impact Assessment of Diverse EV Charging Infrastructures on Overall Service Reliability." Sustainability 14 (20): <u>13295. https://doi.org/10.3390/su142013295.</u>

