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USGS Aftershock Forecasts

User-Centered Evaluation of the Performance of U.S. Geological Survey Aftershock Forecasts
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User-Driven Evaluation Methods

Evaluating Forecasts for Synthetic Sequences
We simulate aftershock sequences following mainshocks of magnitudes 6, 7 and 8, using 
a model with two productivity parameters and no short-term aftershock incompleteness, 
taking canonical values for model parameters. We then compute aftershock forecasts 
under each combination of choices within the three operational variables in the table 
below. We repeat this 10 times for each mainshock and evaluate forecasts using multiple 
metrics. We aggregate metrics across forecast bins and forecasted sequences, 
considering the 75th percentile in each bin, due to heavy zero-inflation in all scores.
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We evaluate the operational USGS 
aftershock forecast system, finding that 
both forecast accuracy and precision 
improve if forecasts use model par-

meters fit to the ongoing aftershocks.

For the simulation, we plan to:
- Simulate sequences with different values for model parameters, operational choices
- Calculate forecasts with all combinations of operational choices (supercomputing necessary)
- Sanity-check forecast metrics, for forecasts of all durations and on the time schedule of the 

operational USGS forecast system

For the observational study, we plan to:
- Compute hypothetical forecasts under each operational combination for several important 

recent US sequences (e.g., 2019 Ridgecrest, 2020 Magna, UT)
- Compare to the real USGS published forecast for each sequence

- Evaluate all forecasts against observations with multi-metric approach
- Analyze evaluation results to understand which operational choices consistently lead to 

superior forecast skill (accuracy, precision, over/under-prediction)
- Present evaluation of USGS forecasts to diverse user groups, emphasizing connection 

between evaluation metrics and that group’s use cases for aftershock forecasts

Preliminary Results and Discussions
The United States Geological Survey 
(USGS) releases public aftershock 
forecasts following earthquakes larger than 
M4.0 in the United States (Fig. 1). These 
forecasts have helped inform response and 
recovery decisions after damaging 
earthquakes (Schneider et al., 2025), 
including:
• emergency managers planning search 

and rescue operations
• engineers deciding whether and when 

to repair or rebuild damaged buildings
• risk communicators disseminating 

information on future hazards.

To forecast aftershocks, we fit parametric 
statistical models to data from past 
earthquakes (including the mainshock). 
Simulating from the model produces a 
probability distribution of aftershock counts 
(0, 1, …) for a forecast for a specific:
• Magnitude threshold (e.g, M3+, 4+) 
• Forecast duration (e.g., one day, month) 
• Time point following a mainshock (e.g., 

20 minutes, 1 day, 3 months) 
We discretize forecast probability 
distributions in breaks of 1.25% (Fig. 2). 

Forecasted probability distributions are 
released on the USGS website, with 
interactive graphics for exploring different 
magnitude-duration combinations. 
Forecasts are updated for one year on a 
fixed schedule, with more frequent 
updating early in the sequence when more 
aftershocks tend to occur.

Past work on earthquake forecast testing has used tests 
established by an academic consortium, the Collaboratory 
for the Study of Earthquake Predictability (CSEP; 
Schorlemmer et al., 2018). Our study differs from traditional 
CSEP studies because we evaluate:
• full forecast probability distributions, not forecast means
• operational models (which allow the analyst to make 

modelling choices), not fixed CSEP-style models
• mainshock-triggered (aftershock) not continuous 

(earthquake) forecasts
• user-relevant components of forecast skill, not CSEP-

style test results

We use evaluation metrics that are relevant to user needs 
for aftershock forecasts. To evaluate the accuracy of 
forecasts represented by cumulative probability distributions 
of a forecasted variable against observations, we use the 
continuous ranked probability score (CRPS), or the 
integrated difference between the forecast distribution and 
the observation (see orange areas in Fig. 2). The lower the 
CRPS, the more accurate the forecast and the CRPS is 
minimized when the forecasted distribution matches the 
observed distribution. The CRPS has been used widely to 
summarize forecast accuracy for probabilistic forecasts for 
other hazards, e.g., weather (Zamo and Naveau, 2018).

The CRPS does not specifically quantify the spread of the 
forecast distribution (forecast precision), nor when a 
forecast severely over- or under-predicts the observed 
count. We thus complement it with the following metrics:
- Range: the range of the middle 95% forecast interval, 

which is provided in USGS’ public forecast product
- Underprediction: whether the forecast’s maximum is 

below the observed number and by how much
- Overprediction: whether the forecast’s minimum is above 

the observed number and by how much

Tradeoffs often exist between forecast accuracy vs. 
precision and forecast overprediction vs. underprediction, 
which relate to different use cases. While many users would 
prefer accurate forecast distributions (even at a cost to their 
precision), a risk communicator may prefer more precise 
forecasts. Similarly, search and rescue operations may 
prioritize forecasts that do not underpredict, while engineers 
delaying building inspections to wait out aftershocks may 
prefer forecasts that do not overpredict. Quantifying these 
tradeoffs can inform more user-driven forecasting strategies.

Variable Operational Choice
Mag. of comp-
leteness (Mc) 
parameters

Baseline: None, Mc(t)=Mc
CA values: F=1.00; G=4.75; H=0.75
World values: F=0.50; G=0.25; H=1.00

Productivity 
parameters

Baseline: One productivity for mainshock and aftershocks
Innovation: Separate productivity for mainshock

Sequence-
specific model 
parameters

Baseline: No updating (parameter estimates fixed to generic tectonic dist’n)
Innovation: Generic parameters updated by sequence-specific parameter 
estimates using Bayesian approach 

The forecasting system allows for several operational choices (Page et al., 2016):
• Model parameters can vary over time (they are repeatedly estimated during the 

sequence) rather than stay fixed at specific values. Early in time, model parameters are 
drawn from distributions corresponding to the tectonic region of the mainshock and 
these distributions are updated based on the sequence’s activity, in a Bayesian way 

• Magnitude of completeness (Mc) can be set to vary over time, by adopting parameter 
values based on the mainshock region

• Mainshock productivity can be parameterized separately from the productivity of the 
rest of the aftershocks in the sequence

USGS aftershock forecasts have only been evaluated for key sequences (e.g., Michael et 
al., 2020). Here, we systematically quantify how the above forecasting ingredients affect 
forecast skill, aiming to improve forecasting for audiences with diverse needs.

Fig. 1: Example of USGS public aftershock forecast product, showing 
forecast of M5+ aftershock for the next month following an earthquake

Fig. 3: (a) Testing metrics for forecasts made with mainshock productivity fixed to aftershock productivity or estimated separately.
(b) Testing metrics for forecasts made with model parameters drawn either from generic parameter estimates or Bayesian combination of generic and 
sequence-specific parameter estimates. 

(b)

(a)

Forecasts made with one 
rather than two productivity 
parameters have slightly 
less accurate forecasts, 
perhaps due to slightly 
higher ranges.

Forecasts tend to be more imprecise 
and inaccurate with generic 
parameter estimates vs. Bayesian 
(sequence-specific) parameter 
estimates.

Forecasts tend to 
underpredict more 
using Bayesian vs. 
generic parameter 
estimates.

Fig. 2: Example cumulative distribution functions for forecasts for two 
bins, with the observed number in purple and the CRPS in orange
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Contact
Please get in touch with any questions, comments or suggestions!
Email mschneider@usgs.gov.
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