Introduction
Research Contexts and Gaps
 Existing studies Primarily relied on linear-based causality analyses. Focused on psychological factors (e.g., risk perception), the metacuation decisions, and the mediator of other influencing factors Linear-based models: mainly designed for causal analysis, or prediction accuracy. Prediction models based on psychological frameworks: I availability and sensitivity to diverse demographics and social of Machine learning models can address these issues, but uninterpretable black-box models. ➤ This study proposes the development of an interpretable learning model based only on social context data.
Research Goals
 Examine the non-linear mechanism of social contexts a requirements on evacuation decisions. Develop an interpretable-machine-learning model for more prediction of evacuation decisions.
Research Objectives
 Nonlinearity detection: Low-depth decision trees Identify critical thresholds Build transparent model structure Ensure robustness
Methodology practicability examination

• An empirical dataset collected after Hurricanes Katrina and Rita

Significant Threshold Effects

Predictor1	Threshold1	Predictor2	Threshold2	p-va
HHSize	> 2.39	/	/	< 0
RegVeh	> 2.01	/	/	< 0
EvaVeh	> 1.00	/	/	< 0
EvaCost	> 704.03	/	/	< 0
RiskArea	> 3.45	$\mathbf{EvaCost}$	> 704.03	< 0
HHSize	≤ 15.00	RegVeh	> 2.99	< 0
HHSize	≤ 13.50	EvaVeh	> 2.00	< 0
Edu	> 10.33	EvaCost	≤ 511.22	< 0

Model Comparisons

	In-Sample Performance		Out-of-Sample Performanc		
Model	\mathbb{R}^2	Adj R^2	Accuracy	Precision	Rec
Baseline LR	0.1141	0.1032	0.7734	0.7734	0.9
Baseline LR w/ Psychological Variables	0.3025	0.2882	0.8516	0.8571	0.9
ELR w/ Significant Univariate Threshold Effects	0.5363	0.5293	0.8750	0.8878	0.9
ELR w/ All Significant Threshold Effects	0.8316	0.8285	0.9375	0.9333	0.9

National Science Foundation WHERE DISCOVERIES BEGIN

s work was supported by the National Science Foundation under Grant SES-0527699, SES-0838654, IIS-1212790, SES-2303578, and SES-2303579. e of the conclusions expressed here necessarily reflects views other than those of the authors.

Predicting Hurricane Evacuation Decisions with Interpretable Machine Learning Models

Yuran Sun¹, Shih–Kai Huang², and Xilei Zhao¹

¹Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL

²Department of Emergency Management and Public Administration, Jacksonville State University, Jacksonville, AL

