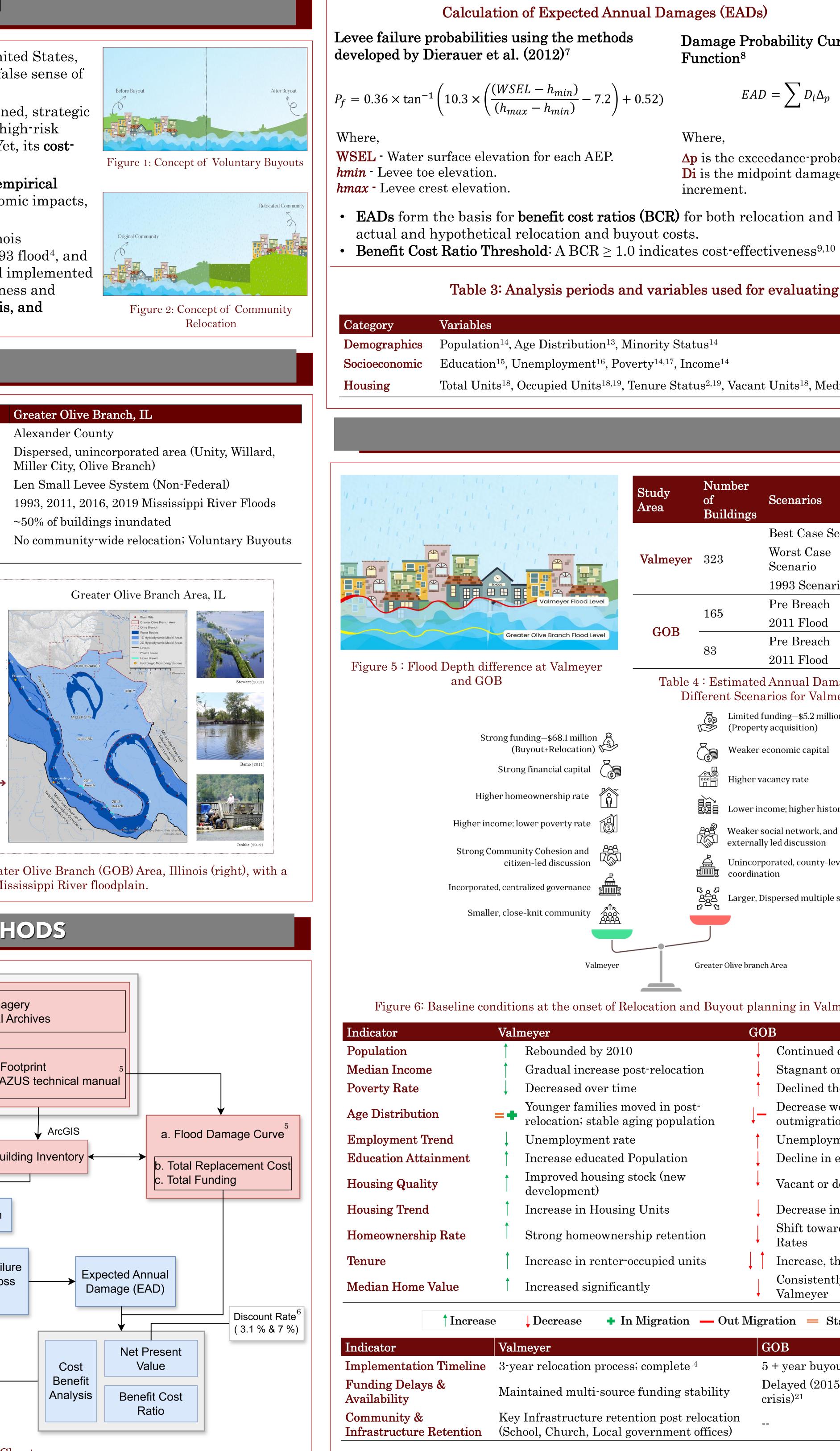

QUANTIFYING COSTS AND BENEFITS OF MANAGED RETREAT: INSIGHTS FROM VALMEYER AND GREATER OLIVE BRANCH, ILLINOIS Rajee Tamrakar, Jonathan W.F. Remo


INTRODUCTION

- effectiveness and social outcomes remain underexamined.
- especially in levee-protected communities.
- social consequences using flood loss modeling, benefit-cost analysis, and longitudinal socioeconomic analysis.

Old and New Valmeyer, IL County Monroe County **Community Type** Incorporated community Harrisonville-Stringtown Levee System (Federal) Levee Type Major Flood Event 1993 Mississippi River Flood ~90% of buildings inundated Structure Inundated Entire town relocated to higher ground ⁴ Community Relocation (3 miles east and 400 feet higher in elevation) Mississippi River Corridor between Old and New Valmeyer, IL Valmeyer and Greater Olive Branch -89°40' -89°30' -89°20' -89°10' -89 River Mile Old Valmeyer New Valmeyer Water Bodies 1D Hydrodynamic Model Areas 2D Hydrodynamic Model Areas 0 5 1/0 20 Kilometers Levees BreachScenario 1993 Breach Scenario Best Case Scenario ----- Worst Case Scenario Knobloch (200 1.5 3 6 Kilometer Fort Chartres and vy Landing Drainage and Levee District

Geography and Environmental Resources Program, School of Earth Systems and Sustainability, Southern Illinois University Carbondale, IL, USA

Table 5: Comparative summary of demographic, housing, and institutional outcomes between Valmeyer and GOB

Calculation of Expected Annual Damages (EADs)

Damage Probability Curves Function⁸

 $EAD = \sum D_i \Delta_p$

Where, $\Delta \mathbf{p}$ is the exceedance-probability increment,

Di is the midpoint damage for the increment.

EADs form the basis for benefit cost ratios (BCR) for both relocation and buyouts, using

Table 3: Analysis periods and variables used for evaluating long-term socioeconomic changes in Valmeyer and Greater Olive Branch (GOB), Illinois

Total Units¹⁸, Occupied Units^{18,19}, Tenure Status^{2,19}, Vacant Units¹⁸, Median Home Value¹⁸

RESULTS

	Study Area	Number of Buildings	Scenarios	EAD (\$)	2.00	
	Valmeyer	323	Best Case Scenario Worst Case Scenario 1993 Scenario	\$398,000 \$3,935,000 \$3,058,000	fit - Cost - Ratio	
Level	GOB	165 83	Pre Breach 2011 Flood Pre Breach 2011 Flood	\$766,000 \$548,000 \$591,000 \$493,000	-1.00 -0.13 Best Case	
C		ferent Scena	d Annual Damages (EA arios for Valmeyer and funding–\$5.2 million ty acquisition)		Figure 7 : Bene	
			economic capital racancy rate		00.2 Batio	
		දුදු අපු Weakers	ncome; higher historical povert social network, and ly led discussion	Y.	- Cost -	
		ម៉ារ៉ោ coordina ធេក្ខុ	porated, county-level ation Dispersed multiple small towns		-1.00 - Pre Bro	
y Allow Walmeyer		Greater Olive brand	ch Area		Figure 9: Be	
set of Re	elocation and	· -	anning in Valmeyer and OB	d GOB		
l by 2010 crease po over time	ost-relocatio	Ļ	Continued decline Stagnant or decline Declined then increa		• BCA rev flood dar	

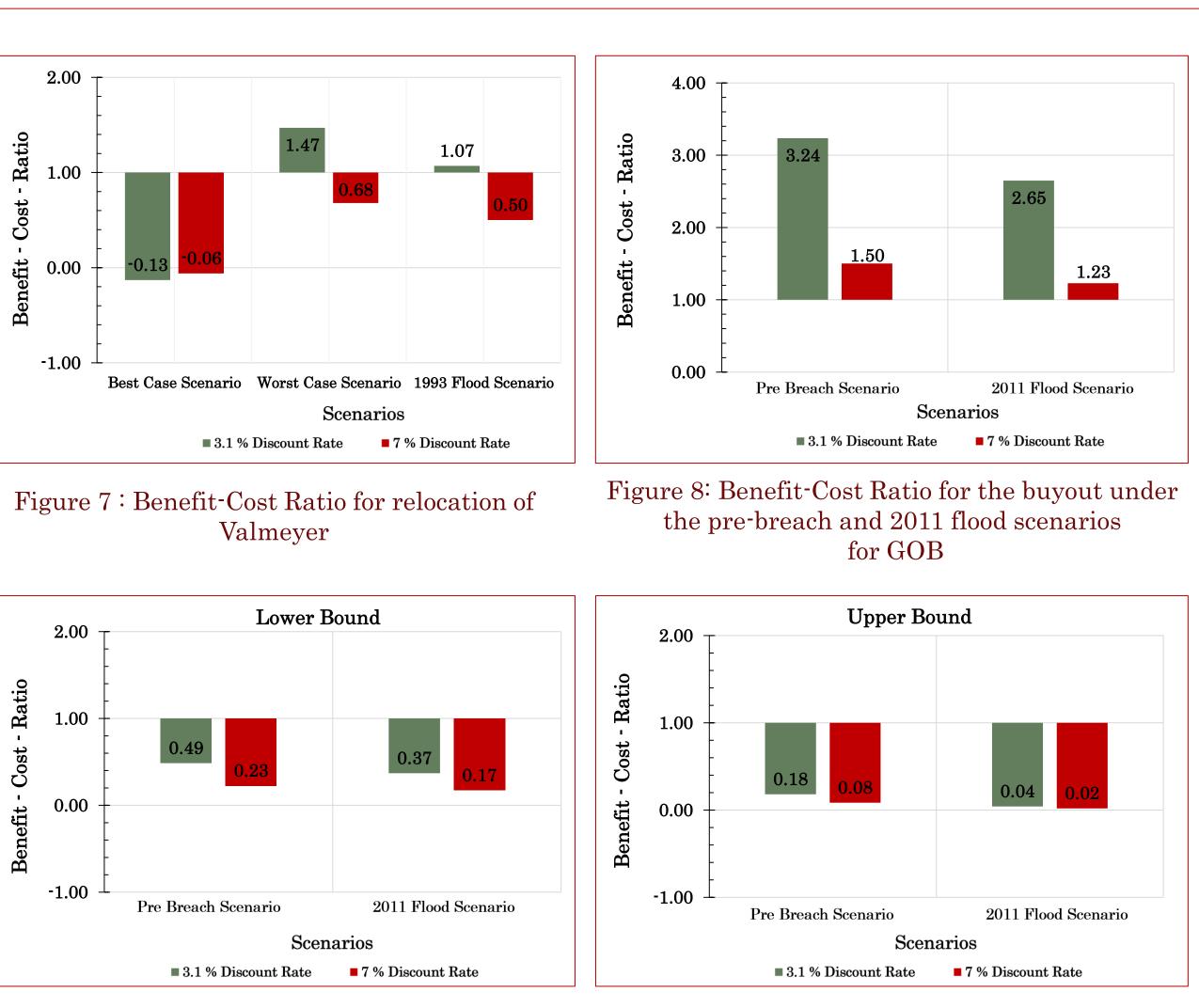
y 2010	Continued decline			
ease post-relocation	Stagnant or declined			
ver time	Declined then increased			
ilies moved in post- able aging population	Decrease working age population; outmigration			
ent rate	Unemployment rate			
cated Population	Decline in educated population			
using stock (new	Vacant or deteriorating homes			
Iousing Units	Decrease in Housing Units			
ownership retention	Shift towards Higher Vacancy Rates			
enter-occupied units	Increase, then decrease			
gnificantly	Consistently lower than in Valmeyer			
✤ In Migration — Out Migration = Stable				
	GOB			

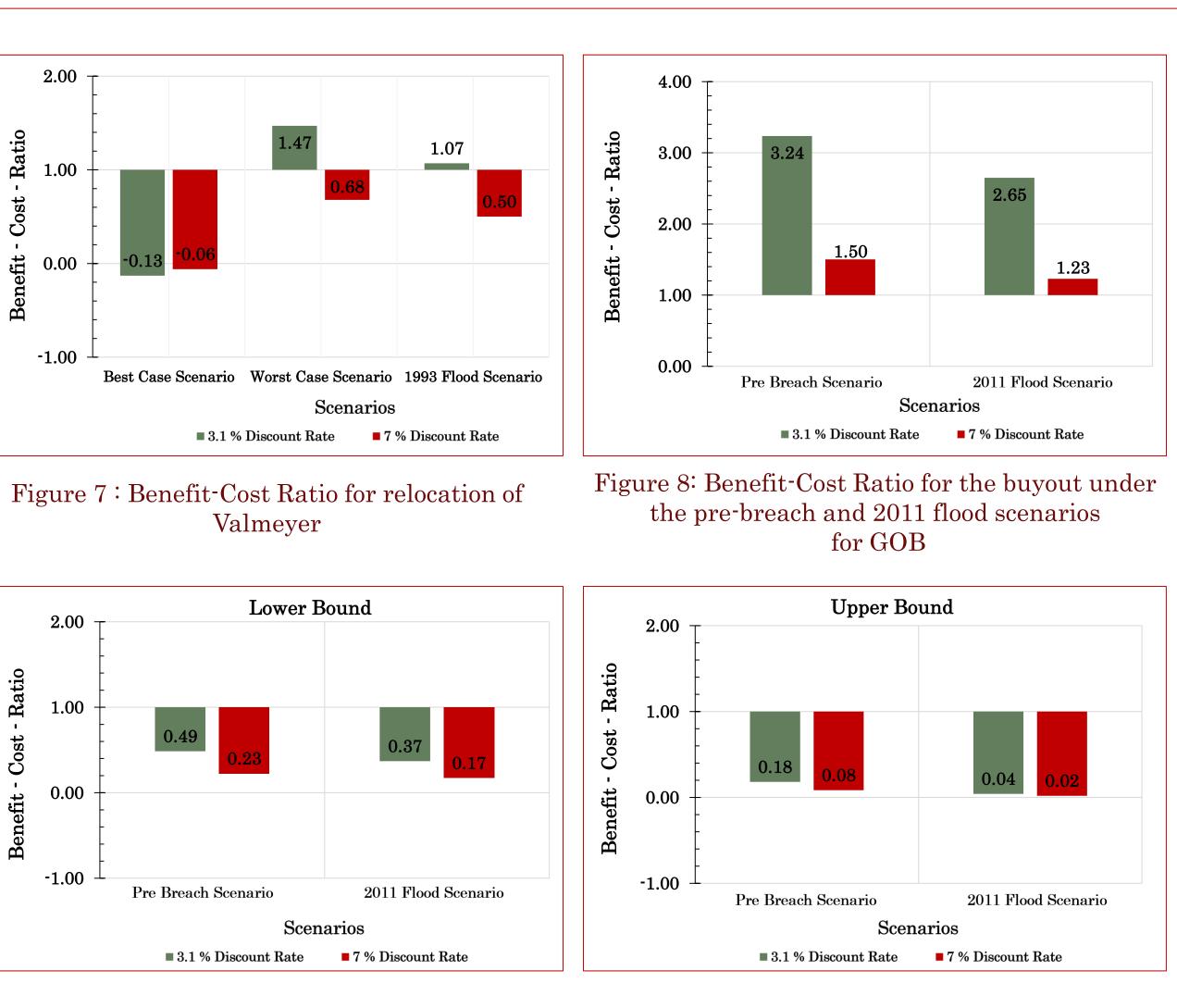
Maintained multi-source funding stability

Key Infrastructure retention post relocation (School, Church, Local government offices)

5 + year buyout process; Incomplete Delayed (2015 Illinois state budget crisis)²¹

Scenario
Valmeyer - Total Funds*
GOB - Upper Bound**
GOB - Lower Bound (2011 Flood scenario)**
GOB - Lower Bound (Pre- breach Scenario)**


GOB-Actual Buyout Funds*


*Actual Funding amount extracted from FEMA

Analysis Periods

Baseline Status

Long Term Analysis

enefit-Cost Ratio for the upper and lower-bound relocation scenarios in GOB

ngs include:

- scenarios.
- community's recovery trajectory.
- community.
- communities.

For queries, contact: Rajee Tamrakar rajeetamrakar@gmail.com

Table 2: Actual and Hypothetical Relocation and Buyout Costs

Building Inventory Scenario	Costs (\$2024)	Buildings
Full Relocation post 1993 flood ^{11,12}	\$68,136,912	324
Hypothetical full-community relocation	\$48,192,546	165
Hypothetical relocation of the 83 highest flood	\$22,382,601	83
depth buildings	\$22,906,150	83
Buyout Acquisition post 2011 flood ¹²	\$5,123,625	83
** Estimates developed for the study	nt extracted from FEMA	

Valmeyer	GOB
Before 1993 Relocation	Before 2011 Buyouts
After 1993 Relocation and before 1993 Flood	After 2011 Buyouts and before 2010 Flood

CONCLUSION

vealed Valmeyer's relocation has a BCR >1 for flood scenarios where flood damages in the community are large

• BCRs were <1 for the Greater Olive Branch (GOB) relocation scenarios, as flood damage was not large enough to justify the potential relocation costs. However, GOB's Buyout had a BCR >1 for the pre-breach and 2011 flood

• Pre-existing social vulnerability, governance fragmentation, and limited institutional capacity shaped post-flood paths and influenced each

• Findings suggest that the applicability and success of managed retreat cannot be solely addressed through flood risk or benefit-cost analysis but also **depend** on the underlying social, economic, and institutional capacities of the

• Relocation is more viable in areas with large flood damage, stronger financial capacity, and strong social capital and community cohesion, while targeted buyouts may be more appropriate for dispersed, socioeconomically vulnerable

• Managed retreat is not a one-size-fits-all solution and is context sensitive.

