

TEXAS A&M UNIVERSITY

Jyun Yi Wang<sup>1</sup> Youngre Noh, PhD<sup>2</sup> Walter Gillis Peacock, PhD<sup>3</sup> 1. PhD Student, Texas A&M University (*jvun@tamu.edu*) 2. Assistant Professor, Texas A&M University 3. Professor, Texas A&M University

## Hazard Reduction & Recovery Center

#### Overview

#### Introduction:

- Real estate transactions can be influenced by disasters and hazard maps. By analyzing changes in housing prices, planners could gain a deeper understanding of hazard information.
- Information on disaster impacts, proximity to hazards, and environmental cues are potentially associated with home-buying behaviors.
- However, disaster Hazard impacts on perception and prices fade over time, leading to price recovery.

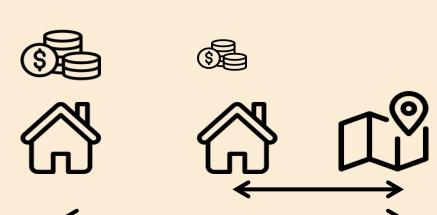
Aim: Understand the individual and combined effects of explicit (maps) and experiential (events) landslide risk information on housing prices.

#### Methods:

- Area: Xizhi District, New Taipei City, Taiwan.
- Data: 39,836 housing transactions and their structural attribute data (2012-2024).
- Data Sources: Ministry of the Interior and Ministry of Agriculture, Taiwan.
- **Network Analysis:** To capture environmental attributes by route distance.
- **Model:** Hedonic Models and Difference-in-Differences Models.

#### Key Findings:

- Maps: Proximity to mapped risky streams negatively impacted prices (e.g., 37.64% drop within 100m).
- Actual Event: 2022 Landslide caused immediate and significant price drops (57.16%), but only on the older and weaker-structure house type (AB5F).
- **No Ripple Effect:** The landslide did not evoke further awareness and led to a price decrease near risky streams.
- **Temporal:** 2022 Landslide impact was short-lived (9 months), suggesting disaster myopia may exist.


#### **Conclusion:**

- Hazard maps can be effective guides and hence influence transactions. They can serve as mitigation information tools and , in combination with other measures (e.g., land-use, insurance), leverage development toward urban resilience.
- Disaster events can have severe but short-lived declines, indicating risk myopia. Windows of opportunity after disasters should be exploited to promote resilience, especially in the risky stream areas.

#### **Research Hypotheses**

#### H1:

Landslide hazard maps negatively affect the housing market; proximity to map-indicated risky areas is negatively associated with housing prices.



#### H2:

Actual landslide events cause additional declines in housing prices and amplify the negative effects in hazardous areas indicated on maps.



SE

0'0/1 01/7

#### H3:

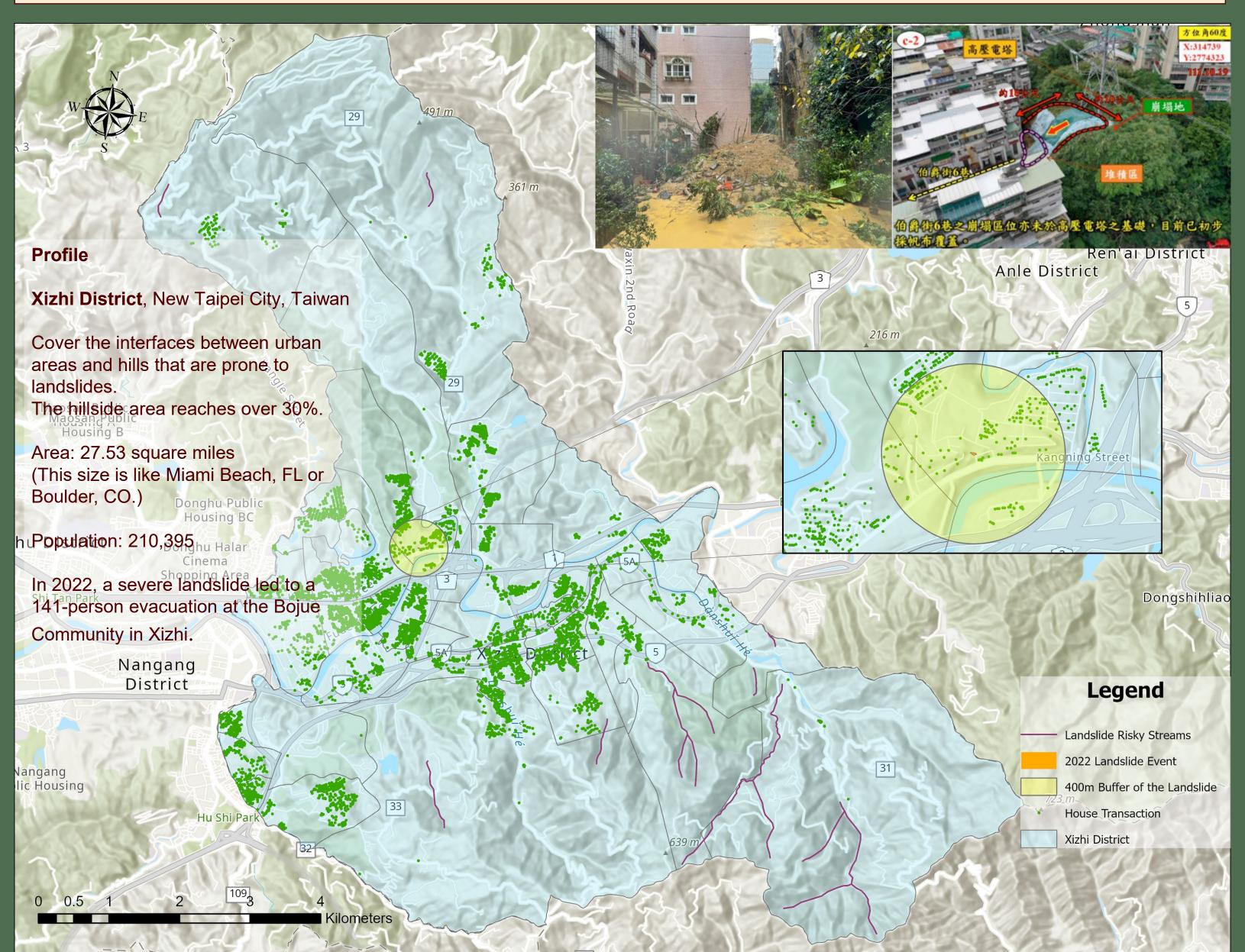
Housing prices begin to recover over one year after landslide events.

# Did Residents Move Away from Hazards? The Consequences of a Landslide and Landslide Risk Mapping for Housing Prices

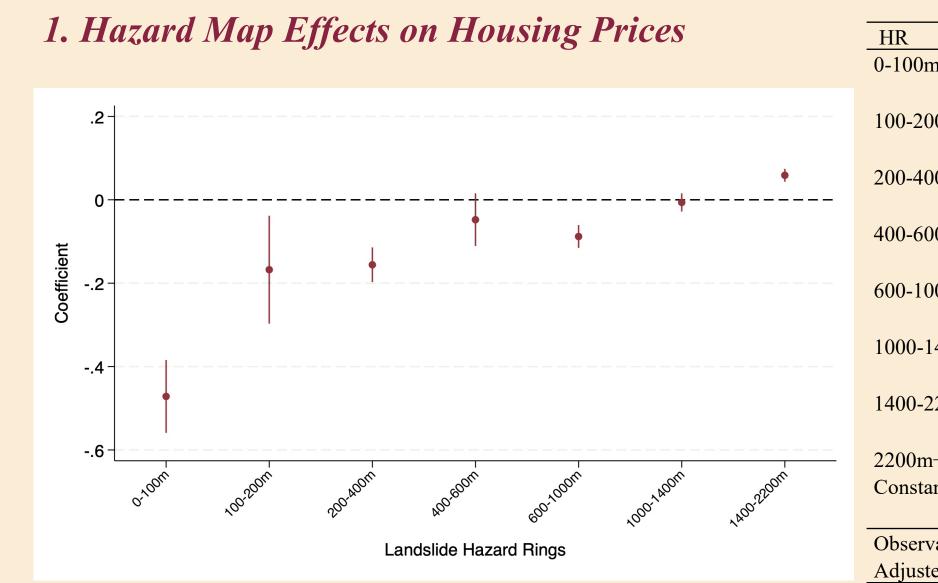
### Models

#### Model 1: Map Impact

 $ln\_AdPrice = \beta_0 + \beta_1 S + \beta_2 E + \beta_3 HR$ Tests hazard map effects on housing prices


Model 2: Event Impact  $ln\_AdPrice = \beta_0 + \beta_1 S + \beta_2 E + \beta_3 Treat*Post + \alpha_i + \gamma_t$ Tests landslide event effects

Modified Model 2: Event Impact with Housing Types  $ln_AdPrice = \beta_0 + \beta_1S + \beta_2E + \beta_3Treat*Post + \beta_4h_type + \beta_5Treat*Post*h_type + \alpha_i + \gamma_t$ *Tests event effects controlling for housing types* 


#### Model 3: Map-Event Interaction

In AdPrice =  $\beta_0 + \beta_1 S + \beta_2 E + \beta_3 MTreat*Post + \alpha_i + \gamma_t$ *Tests interaction between map and event* 

Variables: In AdPrice: Log Adjusted Price, S: Structural Attributes, E: Environmental Attributes, HR: Extent of Hazard Effect on the Map, h type: Housing Types, Treat: Interest Area of the Event, Mtreat: Interest Area of the Map, Post: After the Event, and TS: Time Series.



#### Results



SE .

 $\bigcirc$ 



Model 4: Recovery Analysis ln AdPrice =  $\beta_0 + \beta_1 S + \beta_2 E + \beta_3 TS$ *Tests temporal price recovery patterns* 

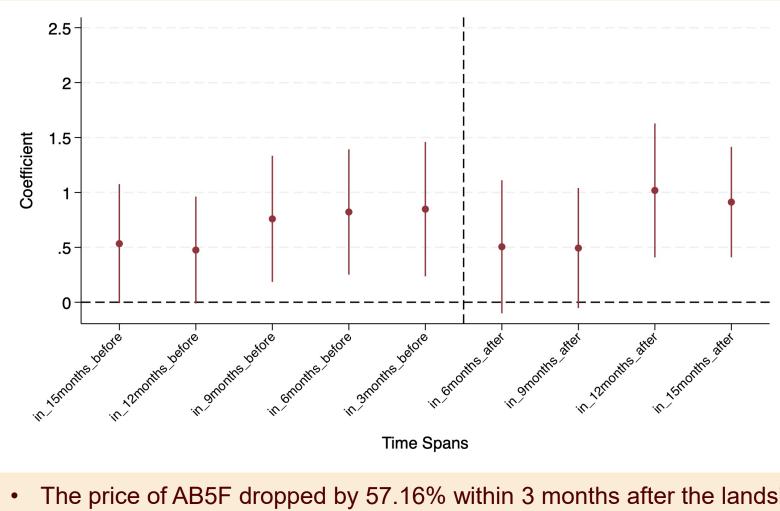
|                   | Log (Price) |  |
|-------------------|-------------|--|
| n                 | -0.472***   |  |
|                   | (0.045)     |  |
| )0m               | -0.168*     |  |
|                   | (0.066)     |  |
| )0m               | -0.156***   |  |
|                   | (0.021)     |  |
| )0m               | -0.048      |  |
|                   | (0.032)     |  |
| )00m              | -0.088***   |  |
|                   | (0.014)     |  |
| 400m              | -0.006      |  |
|                   | (0.011)     |  |
| 2200m             | 0.059***    |  |
|                   | (0.008)     |  |
| 1+                | Base Group  |  |
| int               | 17.252***   |  |
|                   | (0.022)     |  |
| vations           | 39839       |  |
| ed R <sup>2</sup> | 0.526       |  |

- Proximity to the mapped risky streams negatively impacted prices.
- The impact extends to 1,000 meters.
- Within 400-600 meters, there might be a trade-off between natural views and hazards.

#### Results

| 2. 2022 Land                                                                              | slide Efj        | fects on          |
|-------------------------------------------------------------------------------------------|------------------|-------------------|
| Treat <sub>600m</sub> *Post <sub>12mo</sub><br>Treat <sub>600m</sub> *Post <sub>9mo</sub> | 0.086<br>(0.044) | 0.116*<br>(0.054) |
| Treat <sub>600m</sub> *Post <sub>6mo</sub><br>Treat <sub>600m</sub> *Post <sub>3mo</sub>  |                  |                   |
| $Treat_{400m*}Post_{12mo}$<br>$Treat_{400m*}Post_{9mo}$                                   |                  |                   |
| $Treat_{400m*}Post_{6mo}$<br>$Treat_{400m*}Post_{3mo}$                                    |                  |                   |
| Observations                                                                              | 5314             | 3792              |
| Adjusted R <sup>2</sup>                                                                   | 0.472            | 0.534             |

|                                             | Single-family house | Apt. (11+ stories) | Apt. (6-10 stories) | Apt. (5- stories) |                                                                  |
|---------------------------------------------|---------------------|--------------------|---------------------|-------------------|------------------------------------------------------------------|
| Treat <sub>600m</sub> *Post <sub>9mo</sub>  | +***                | +                  | - (nonsignificant)  | +***              | <ul> <li>After controlling<br/>housing types, 5-story</li> </ul> |
| Treat <sub>600m</sub> *Post <sub>6mo</sub>  | +***                | +***               | - (nonsignificant)  | -(nonsignificant) | high apartments<br>(AB5F) received                               |
| Treat <sub>600m</sub> *Post <sub>3mo</sub>  | +***                | +                  | -(nonsignificant)   | -(nonsignificant) | impacts after the landslide.                                     |
| Treat <sub>400m*</sub> Post <sub>12mo</sub> | +***                | +*                 | -(nonsignificant)   | -(nonsignificant) |                                                                  |
| Treat <sub>400m*</sub> Post <sub>9mo</sub>  | +***                | +**                | +***                | -*                | <ul> <li>The impact sustained<br/>9 months.</li> </ul>           |
| Treat <sub>400m*</sub> Post <sub>6mo</sub>  | +***                | +***               | +***                | _***              |                                                                  |
| Treat <sub>400m</sub> *Post <sub>3mo</sub>  | +***                | +***               | na                  | _***              |                                                                  |


Log (Price)

#### 4. Interaction between the Map and the Landslide

| MTreat*Post <sub>12mo</sub> | 0.002   |      |
|-----------------------------|---------|------|
|                             | (0.028) |      |
| MTreat*Post <sub>9mo</sub>  |         | -0.  |
|                             |         | (0.0 |
| MTreat*Post <sub>6mo</sub>  |         |      |
|                             |         |      |
| MTreat*Post <sub>2mo</sub>  |         |      |

| 2110                       |           | (0.022)   |           |           |
|----------------------------|-----------|-----------|-----------|-----------|
| MTreat*Post <sub>6mo</sub> |           |           | -0.026    |           |
|                            |           |           | (0.031)   |           |
| MTreat*Post <sub>3mo</sub> |           |           |           | -0.007    |
|                            |           |           |           | (0.043)   |
| Constant                   | 18.114*** | 18.149*** | 17.088*** | 16.714*** |
|                            | (0.553)   | (0.551)   | (0.598)   | (0.595)   |
| Observations               | 6009      | 4296      | 2652      | 1217      |
| Adjusted $R^2$             | 0.439     | 0.451     | 0.522     | 0.577     |
| 5 Price Rec                |           |           |           | 0.577     |





• The price of AB5F dropped by 57.16% within 3 months after the landslide. AB5F took 9 months for housing prices to recover after the disaster

## **Implications in Hazard Mitigation Planning**

- 4. Maintain accurate, updated hazard mapping systems

Housing Prices

• There is no significantly negative result without considering housing 0.126\*\* types (0.045)• This model couldn't detect impacts 0.053 on the prices. (0.059) $0.084^{*}$ (0.032)0.098\*\* (0.031)0.097 (0.028)(0.057)5314 3792 2324 1068 1068 0.565 0.551 0.472 0.534 0.565 0.551

#### 3. 2022 Landslide Effects Controlling Housing Types on Housing Prices ( $\beta$ 3+ $\beta$ 5)

Log (Price)

 There is no significant negative effect on houses near landslide-

# prone streams after the disaster

| TS              | Log (Price)       |
|-----------------|-------------------|
| 15months_before | 0.533             |
|                 | (0.256)           |
| 12months_before | 0.475             |
|                 | (0.229)           |
| 9months_before  | 0.759*            |
|                 | (0.271)           |
| 6months_before  | 0.822**           |
|                 | (0.269)           |
| 3months_before  | 0.848**           |
|                 | (0.289)           |
| 3months_after   | <b>Base Group</b> |
| 6months_after   | 0.505             |
|                 | (0.286)           |
| 9months_after   | 0.493             |
|                 | (0.258)           |
| 12months after  | 1.018**           |
| _               | (0.288)           |
| 15months after  | 0.912**           |
| _               | (0.237)           |
| Constant        | 1.903             |
|                 | (4.920)           |
| Observations    | 35                |
| Adjusted R2     | 0.609             |

**1.Use housing prices to evaluate hazard map effectiveness** 

**2.Implement market-based mitigation instruments based on hazard maps 3.** Target interventions during post-disaster risk awareness peaks