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PROBABILISTIC APPROACHES TO DISCRETE NATURAL EVENTS:
A REVIEW AND THEORETICAL DISCUSSION

1. Introduction

It is frequently necessary or useful to examine the probabil-
istic structure of events comprising only a fraction of a time or
space continuum. This paper is concerned with such situations where
they involve natural events or their impact on human communities.
The subject-matter range from rainy periods, dates of plant
germination, and sea-waves, to landslides and tornado strikes. We
shall deal largely with statistical models relevant to groups or
series of events of a single type, both in terms of counts of un-
differentiated instances and measures of magnitude of event.
Interest will be centered on probabilistic models, their physical
interpretations, and logical problems of equivalence relations
with natural phenomena. No attention will be given to the techniques
of analysis, or curve-fitting.

In assessing the expectancy of an event from a series of
measurements of like events, the possibilities to be considered are:-

i) That the probability distribution arises from the

independence and random occurrence of the events.
i1) That the distribution arises for independent events
with an imposed pattern in space or time (e.g.
Renewal processes).
ii1) That the distribution arises from random events but

with dependence between individual events (e.g.
"after-effects," "contagion').



iv) That the probability cf an event at any time or
place is partly or wholly controlled by a "determ-
inistic" process as with periodicity, or trend.

v) That the series of events derives from more than one
process and represents the mixing or pooling of: more
than one probability function.

These are certainly not mutually exclusive possibilities, but
they indicate important logical differences which help sub-divide
material in a paper of the present type. We shall concentrate on 1),
ii) and iii) only.

The basic observations are counts of events, and measures of the
intervals in space and/or time between events. Where these are the

only observations we deal with "

counting processes' in the wide sense.
If, in addition, there are measures of event-variables to take account
of - intensity, duration, size -, we have a magnitude-frequency problem.
The magnitude scale need not be discrete. 1In many cases, discrete
phenomena may be treated as point processes, but considerations of
magnitude can involve duration or areal extent as variables. A further
common distinction is made between frequent and "rare' events, and where
magnitude is involved between '"average' and "extreme' events. While
highly relative in a time or space sense, these distinctions have a basis
in practical and conceptual differences, even when the infrequent is

interpreted with special or limiting cases of distributions suited to

frequent events.

1.2 The Definition and Identification of Discrete Events

The title of the paper implies the popular rather than statistical

use of the word "event.'" That is, we are concerned first with



recognisable occurrences in nature. Equivalence to statistically
defined "events'" must be determined for given instances. A discrete
natural event will be treated as an occurrence with instanteous or
limited duration in a time continuum. While spatial probabilities
of time-limited events will be considered, it is the limited duration
which defines the interest. Discrete event problems arise in two
different and logically independent situations; either when observa-
tions are made at discrete intervals giving "operationally'" discrete
events; or where the event is bounded in time by physical criteria
which apply even with continuous observing.

Discrete events may be identified by one or more of the following

criteria:-

i) The "self-evident'" phenomenon; an unanalysed package
which a large proportion of the observing community
feel they know when they see it. Blizzard, tornado
or comet records include many with only a visual
report.

ii) Threshold events, in which the event occurs when a
given value on a measurement scale is reached, crossed
or surpassed. The threshold may, or may not have a
clear physical meaning. A special case is where all
non-zero measurements constitute events or the binary
situation where an event is analogous to the "on"
position of a switch.
iii) "Coincidence," in which the event requires two or more
conditions to occur together, or when thresholds for two
or more variables are equalled or exceeded jointly. A
specilal case is involved in the study of "singularities"
or "spells," - the joint occurrence of different events
or of certain events on particular dates (Shapiro and
MacDonald, 1961).

All three criteria may apply either to conventional measurement



events or to physically structured events. Either way they are the
means of deciding when an event occurs. If the criteria work
unambiguously, and we are only interested in counts of events then
one may proceed directly to statistical considerations. However,
if the aim is anything but exploring the data, this approach is
inadequate. Unless there are physical postulates, or models
identified with measurement then it is hard to say what the meaning
of the most refined analysis of a string of measurements is. It is
fair to say that in much of the material of interest to us, such
matters have received scant attention. The case is exemplified by
the many analyses of, say, river level maxima or minima and the
negligible work on the frequency distribution of flood-waves which
are more-or-less well-defined physical entities related to specific
controlling conditions. But we will return to these issues in

discussions, and especially in the last section.

2. A Survey of Probability Models for Discrete Natural Events.

2.1 Introductory Remarks

The value of probability theory to modern science was first
demonstrated by those who used it in the basic physical postulates
from which they derived or replicated obsérved behaviour; and with results
more convincing than deterministic theories. Geographers are
returning to this use of probability theory. While much of the
relevant literature on discrete phenomena still emphasises problems
of sampling, statistical estimation and empirical curve-fitting,

there is an awareness that if all this is simply to overcome data



volume or to reach "deterministic'" statements with an estimate of
error, it is a pretty crude sort of science.* The situation is
aggravated by the high order events that interest us, - harvest
yields, floods, accidents, ~ which encourage the use of statistical
methods to identify relative degrees of control by the many variables
we feel are at work, rather than enquiry into the probabilistic
nature of the underlying processes.

The present paper is directed towards probabilistic questions
and will examine statistical distributions primarily in terms of how
and under what conditions they can arise. A range of natural phenomena
which have been analysed and fitted more-or-less adequately to various
distributions is given in Table I at the end. We begin by introducing
most of the relevant distributions in terms of undifferentiated events,
although all of these distributions can also be used to characterise

aspects of magnitude of event.

2.2 Frequency and recurrence intervals of independent random events

In all cthe cases considered in this section, the events themselves
are assumed to satisfy the relation:-

p(ni) = p(n1 + I) for all ny (1)

*Some would protest this. Kari Peason, no less, condemned Kapteyn's
use of the distribution generating approach, as opposed to his own
curve-fitting (c.f. Aitchison and Brown, 1957).



Let us begin with a simple, hypothetical case analogous to common
substantive situations, and build upon it. Suppose that a certain lake
is visited once a week for checking and we need to know how often lake-
level will be within certain limits. The data consist of a long record
of once-weekly readings. For an infinite population of readings the
relative frequency ¢(x), of encountering the lake within limits x *Ax/2

is found from:-

x+hx

P = 2 sx)dx (2)

x-8x
2

We have discrete data and are only interested in two states: that the

lake is within limits (p), or not within limits (q), so that:-

q=1-p (3)

If the mass-balance of the lake were a random variable, and readings a
week apart independent, we have an exact analogue of the data in
Bernoulli trials using an urn with p and q'.the 'same,- If the levels
of interest are close to mean lake level and the limits moderately
broad p should be a large fraction. The number of occasions k when
we expect to find the lake in limits out of n visits can be found

from: -

p(k,n,p) P4 ; k=0,1,2,... 0 2zp=s1 (4)
9
=0 otherwise

THE BINOMIAL DISTRIBUTION

There is no essential difference between the frequency distribution



of our data and of the urn model. Had we, alternatively, been interested

in the ewents net rise (pl),

net fail (pz) or no change (pB) between

successive readings, with these again independent random variables

we have a good approximation  in:-

ki ko k
p(k 3n,p)= __ n! By 1P, 2Py 3

i i T kTR 1

1" 2t Ty
and generally:-
k k2
k, )= !
plk; n,p;) s E : — Py Py
1° 720 ¥

THE MULTINOMIAL DISTRIBUTION

1Ko k= 0,1,2,3,...,
kl+k2+ enkr = n; .
kl + kz + b r =1
Py Py r
(5)

Again, the distribution can be derived from an appropriately

structured urn model (c.f. 2.4.).

The Binomial is obvicusly a

particular case of the Multinomial, but much more widely used.

Natural situations are rarely, if ever as simple as our example.

Furthermore, one is led to gquestion the meaning of treating discrete

readings as physical "events." It is our object to examine such

questions, and we will begin by attempting to define the kinds of

physical conditions under which a symmetrical Binomial distribuzion

can arise in nature. Griffiths (1967, p.256) lists the following:-

Quote:

1) 1In the absence of certain specific "causes'" of variation,
or in the event of perfect balancing of these efrects, the
data may assume a centrai fixed vaiue.

2) Deviations from the central value result from certain

causes of variacrion, the effect of any cause being either
to add a fixed quantity or subtiract the same gquantity.



3) The probability that a cause of variation will prodice
a positive effect equals the probability that it will
produce a negative effect:

P(+ve) = P(-ve) = 3

4) The net effects of all contributing causes of varilation
are of equal magnitude in either direction.

5) The contributory causes are independent in their action;
the P(+ve) or the P(-ve) from any causal factor is independent
of previous contributions.
6) The total deviation of any element from its central value
is the algebraic sum of positive and negative contributilons
of the individual causal factors.
I would want to interpret his ''causes' in a wide sense to include possible
micro-states, Interactions, responses, stresses and any other physically
defined relation or contact.
A case in which spatial occurrence should approximate a Binomial
distribution would be the frequency of raindrop impacts per unit area
of a level field or pond during a steady rainstorm. Likewise, the
wavelets spreading out from each impact point on the pond would be
expected to have randomly distributed phase angles. A count of
frequency of ripple crests at a point would then approximate the
Binomial distribution., This same reasoning has been applied with
moderate success to the statistical theory of wave generation in
the open ocean, where the wind waves are assumed to arise from random
sources (c.f. Longuet-Higgins, 1950; Pierson, 1954). However, here
as elsewhere the preference for employing the continuous Normal or

Guassian distributions prevalls.

The importance of the Binomial distribution and its discrete

N [ . l . [



relatives lies mainly in their heuristic value for developing, say,
equilibrium theories of random situations and examining how deviations
might arise from these states. From pgimple, easily understandable
postulates one rapidly derives 'realistic'" and complex conditions.

An elegant example is found in Schr8dinger (1946), while Feller (1957),
develops examples using urn models. In particular, the analytically
more powerful Normal distribution, which is central to modern statistics,
can be built up using the logic of the Binomial model. As is proved by
the Laplace-de Moivre Limit Theorem (e.g. Sokolnikoff and Redheffer,

1966, p.623), as n»~ the binomial variable k in Equation 4 is asympto-

tically normal, with mean np =m , and variance np(l-p) = 020 The
well-known density function is:-
2 k- 2
p(ksm,07) = _ 1 exp [-3( Om )71 5 —e<mee; 0 > O (7

Ov2m
THE NORMAL or GAUSSIAN DISTRIBUTION

Use of this distribution is prevalent throughout most of the
work of interest. The conditions under which a physical process
follows a Normal frequency function are related to those for the
symmetrical Binomial. It is further required that the number of
contributary "causes" be large, and their positive and negative
contributions small (c.f. 2.4. p. ). In that case omnly Griffiths'
point 6) need be fully satisfied and 4) approximately. For large
samples, our rain splashes, the distance between them, and the phase

angles of resulting waves should follow a Normal distribution. However,
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as in Cartwright's work on sea-wave variables (see Table I) and most
work in hydrology, the assumption of normality may be adopted as a
convenient rather than strictly accurate feature (Cartwright, 1962).
A further property of this distribution is the relative ease with
which many non-normal distributions may be transferred to, or
approximated by the Normal (c.f. 2.4. p. ). In addition to the
Binomial and Hypergeometric, Govindarajulu (1965) has derived uniform
normal approximations to the discrete distributjons, Poisson and
Negative Binomial, to which we now turn.

Farr more common than the Binomial in the study of discrete
random events is the Poisson distribution. This 1is a discrete
distributjon associated with fairly infrequent events; say, where
p <0.2., It is easily shown how the basic Poisson distribution will
arise from the urn model for the Binomial but with p <<I and k<<n;
the "rare" event model. Let a parameter A be the mean sample count
(of "successes') for an infinite number of samples, - the statistical
expectation of k, - and then write the Binomial distribution as:

p() = __n! Gk a-m™
k! (n-k)!
Let n increase towards infinity while A decreases but remains greater

than zero, and:

. ANk ,
) = @)* D" D). (aoker))]
woooap-k. .. L, 2. _
S A2 AT YA L @y

If n increases towards infinity while A and k remain finite, the term
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in braces converges to a value of 1, while the middle term will give:

i An-k _ Li A
Lim (1 __H)n . Lim (a —=H9n

n—)(l) n—}oo

Lim

= N>

L]
[
I
T
|
~

Thus we arrive at the Binomial approximation to a distribution given

by:
-A xk

plk;)) e sk = 0,1,2,...52>0 (85

=0 ctherwise

THE POISSON DISTRIBUTION

As with the Binomial we can go on to define:-

k, k k
y 2 N
_ 4 4 20) a4 tA oo oA . =
P(klgkz,---,kn) = e ()\1+A2+.9,/\n) /]; '2 o I'l ,kl,kz,q..,kn 0,1,2,..
Kl‘ kzu '°"En°
AmﬁO,m =1,2,...,0.
=0 otherwise
(9)

THE MULTIPLE POISSON DISTRIBUTION

But I have not found a substantive use of this in our field.

In analyses of natural events, the Poisson is the "bad news"
distribution associated with such phenomena as waterspouts, floods,
severe storms, meteorite strikes and, most famously, horse kicks in the

Prussian cavalry. Again, however, few natural phenomena give more than
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a rough approximation to the distribution, and even with a close fit,

to demonstrate that a substantive distribution arises from a Poisson

process, such as our modified urn model, requires them to fulfil fairly

stringent criteria. These criteria are:-

1)

ii)

iii)

The probability of more than one event:in a small interval
of length y is of a smaller order of magnitude than y, such
that the probability is o(y) as y - 0. (i.e. the chances of
more than one event occurring simultaneously or at the same
spot are negligible).

That the probability p_(y) of the occurrence of a specified
number n of events in a given interval y, depends upon n
and y but is independent of where the interval is chosen in
the overall space.

The number of events in different segments of the sample
domain represent independent random variables. (i.e. a
time or space series of discrete points must be stationary).

When referring to an appropriate process we use a distinct notation

which in the case of a Poisson process might be:-

or;

R

P{X(t) =k}=e 'F ; etc., (8a)
| - A MY 5 ete (8b)
P{X(t) = k}=e = u ’ T ‘

where t and A are index parameters consisting of real, positive numbers

respectively of time and area, and form terms for the time or space

averages (for detailed discussions see Cox and Lewis 1966; Purzen, 1962).

In general, it seems that the Poisson fits natural events best where At

or AA are very small compared to the sample period or quadrat (e.g. Thom

1957, who found a good fit for hail storms only with A<2 per year).

Otherwise, "clustering'" and at least the appearance of dependence between
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events tend to occur. The criteria thus violated can, however be
circumvented using modified Foisson or other models (see 2.3).

Some of the most important distributions used in studying discrete
natural events can be developed from those already discussed if we
consider the recurrence intervals of, or waiting time between events.
There are two questions which can be asked: i) how long, or how many
trials must one have to record a single event ('success'")? and more
generally, ii) how long, or how many trials are needed to record r
events? Answers to these questions involve distributions with positive
skewness. The discrete distribution which answers the first question

for a series of Bernoulli trials has the probability mass functicn:-

p(x) = p(1-p)™ ; x=0,1,2,...; Ospal {10)

1t

0 otherwise

THE GEOMETRIC DISTRIBUTION

It is a much less common distribution than the continuous equivalent
applying to the same question. Given that the events are occurring
randomly at a mean rate A per unit of time we have:-

p(x) Ae_AX 5 x>0

=0 otherwise {11)

THE EXPONENTIAL DISTRIBUTION

This is a fairly versatile distribution and may adopt a number cf

forms (@.g. 2.4.).
In answer to the second question; the discrete distribution

which gives the number of trials up to the rth "success" in Bernoulli
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trials is:-

tr+x—1) r X
% P q

p(x)

- X
‘ §) pr(-q) s x = 0,1,2,...3 Oszpsl

0 otherwise (12)

THE NEGATIVE BINOMIAL or PASCAL'S DISTRIBUTION

This is actually called Negative Binomial where r is an arbitrary real
number; and Pascal with r a positive integer. With r = I it reduces
to the Geometric, and is also a limiting form of the Polya distribution
(see Feller op. cit. p. 131).

To answer the second question with a continuous distribution when
events are occurring at a mean rate A we may use:-

A r-1 -Ax .
) (Ax) e ; x>0

p(x) =r.
= 0 ; x<0 (13)

THE GAMMA or PEARSON TYPE III DISTRIBUTION

.
Whererﬁ(f) is the incomplete Gamma or "factorial" function, ipeufﬂ(z)
with z =r, a positive integer such that[ﬂ(r) = (r-1)!, (see Sokolnikoff
and Redheffer op. cit. p. 45). This is a very versatile distribution.
It reduces to the Exponential with r = f. The Gamma and Exponential
distributions are used extensively to describe recurrence intervals or
waiting-times in a wide variety of situations, especially with Poisson
and related processes (e.g. Parzen op. cit.). 1In a recent paper
careful comparisons were made between these two distributions and a

Markov model (see below) to describe waiting-times between river level

exceedances for modified daily series', (McGilchrist et.al. 1968 and 1969).
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Decker (1952) used a Gamma model to fit the spatial occurrence of
damaging hail storms.

We have derived these models in a particular way. They may however
be reached through other processes. The Normal,Exponential and Gamma
laws are most often applied to magnitude~frequency problems, while the
Negative Binomial and Gamma are important in the study of "after-effects'

or clustering in discrete events, to which we now turn.

2.3 Clustering, After-effects and Contagion in discrete events

In fact, the most erratic of natural events have a tendency to
occur in clusters even when not confined to particular times. Tornadoes,
seismic tremors,sunspots and meteorites are recorded in swarms. With
discrete observing such phenomena as high or low river flow, rainy or
dry days, tend to occur in "rums." The physical interpretation of
apparent dependence is difficult, but first we look at the kinds of
probabilistic processes which result in such distributions.

The simplest type of dependence between random events is where a
state or event depends upon the immediately preceding event but on no
other. Physically, this might arise where there are chance encounters
but specific outcomes according to type of encounter; or where
conditions with a certain probability structure "trigger' others
differently structured or, most commonly, where there is physical
continuity in a phenomenon moving randomly in time or space. The
process is analogous to an urn model with several urns of differing
composition, each trial prescribing from which urn the next trial

is taken (see Feller op. cit., p. 339). 1In such a case we have a
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discrete "Markov chain'" in which, for every finite set AL PR t 1St

PUGx e [X,t) 5 veee 5 X g0t )]

= P{(‘lxn’tnlxn—l’tn—l)}

(14)

THE SIMPLE MARKOV PROCESS

A process of this type is fully specified by its first-order probability
distribution together with the "transitional probabilities':-

P(Xz,tzlx,t)

Such models have been applied to hydrologic and climatic time-series with
moderate success, but usually after considerable modification of the
original observations (e.g. Gabriel and Neumann, 1962, McGilchrist
et.al. 1968; Caskey 1964; Weiss, 1964).

Now, consider an important distinguishing feature of the Negative
Binomial distribution, which is its moment measure:-

variance >
mean

1

whereas 02/A<1 for the Positive Binomial and oz/k = 1 for Poisson.
One way in which a large variance can arise in nature is through
clustering of events at particular times or places, so that the mean
is an unstable estimate of the number of events in an arbitrary unit.
The Negative Binomial, and for similar reasons the Gamma, may be an
excellent fit for these situations. But now, the data do not exhibit
the statistical independence under which we first developed these
models. Clearly, if the distributions are to arise from a single

process, then somehow some "successes" increase the chances of



17

recording more successes. For instance, in our urn model we would
need an arrangement whereby, say, a success from our origirnal urn
would direct sampling to another urn with larger p, or lead us to
add "success'" units to the urn, (Feller, op. cit. pp. 109-114; and
Dacey 1964, p. 961 give exact specifications for urn schemes with
conditional probabilities). Only fairly simple urn and card-pack
models of clustering in nature have been satisfactorily developed.

To take account of persistence in series of events occurring
roughly as a Poisson process, Eggenberger and Polya (quoted in
Brooks and Carruthers, 1963) developed a model in which the terms
of the standard Poisson series expansion are replaced by a

"persistence' series (Wahrscheinlichkeitsansteckung):-

1 N A(A+8)
a+e)VE T 1 Vet 21 (1+8)Y 842
with the general term:-

AOF+B8)Y (A+28)  ....[A+(n-1)RB]
Y=

n! (1+8)
with ) the mean density per sample period (or quadrat) andg to be

found from oz/x-l. Brooks and Carruthers (op. cit.) find a good fit
for observations of frost at Greenwich,‘England and quote analyses
of thunder, gales, rain, cloudiness, fog, snowfall and snow-on-the-
ground,which appear to follow this distribution (their Table CXII,
p. 317). They suggest that the term (14+8) can be called the 'per-

1"

sistence factor" s and conclude that, "...to a first approximation

a phenomenon having a persistence factor s has a tendency to occur
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in groups of average size s. This causes runs to be s-times as

long and the variance of numbers of occurrences in a specified

time to be s-times greater than would be expected if there were

no peristance'" (p. 318). It has been brought to my attention that

Dacey (1965) gave an elaborate development of this model for spatial

point processes. Although T have not seen it used it would seem

highly relevant to such phenomena as tornado-strikes and hail-swaths.
The above distribution, and especially the Negative Binomial are

two of a group of distributions associated with the idea of "contagion."

Here, we adopt a strictly physical interpretation of '

'‘contagion"; namely,
material interaction whereby one event directly increases the chances
of another. 1In fact, almost any probability distribution can be
modified to model contagion. The derivation and properties a various
"contagious'" distributions appear in Patil, 1964, Ch. 2 and 7, includ-
ing a behavioural model of developing contagion in a Binomial situation.
The kind of natural situation where the latter might apply would arise
from our previous examples. With rain-splash erasion on a field during
a steady downpour, the impact distribution remains Binomial, but each
impact can modify the surface so that, looked at as erosional events,
the distribution over some minutes of thg storm can have both trend
and'contagiono

However, the physical interpretation of contagion is complex and
open to many errors. Clustering of events may arise simply through
mixing of random processes such that the events are independent but

their distribution multimodal. Uneven observing can produce clustering,
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as well as material interaction. Even more difficult is the fact that

many natural events are independent of one another but relate back

complexly to common controls.

Some while ago, 1 became excited by the excellent fit of 150

years' record of natural dam-burst floods on the Upper Indus to a

"contagious' Poisson of the Polya-Eggenberger form. It seemed to support

the idea that even such extreme events were broadly related to certain

clima-geomorphic controls., In fact it has proved impossible to determine

whether the distribution is "real" and related to phases of climatic

deterioration, or, among other things, purely the result of spatially

and temporally uneven cbserving.

Summarising the general problem of contagion in biosciences Katti

and Sly (1964) found that:-

Quote: "i) No single theoretical distribution has been found
to describe any large scale data.

ii) For a number of data there could be two or more
theoretical distributions that fit equally well
and there is no way to choose between them based
on fits alone.

iii) Two or more physical models could lead to the same
final statistical distribution and hence rthe estimation
of the parameters of the distribution may not have unigue
meaning.

iv) ... different methods of estimation lead to widely
differing estimates when the methods are coasistent...
there are a number of empirical frequencies to which
the same theoretical frequency function has been fitted

by different consistent methods...

"

Their response to this situation is in keeping with the approach of the

present paper:

namely, tie the statisticail methods as closely as possible



to physical or behavicuristic postulares,
An example which illustrates the above points iIs the use of the
Negative Binomial. Varicus authors point out that a distribution

"negative

fitting this function cannot be uniquely associated with a
binomial process" (Felier, 1943; Anscombe,1949; Bliss, 1953), For
instance the clustering wmay arise, not through contagion but from
heterogeneity. In particular, a process devised by Greenwood and

Yule (1920} called au infinitely compounded Poisson model, and used

for attacks of disease, gives identital distiibuticans to the comtagilous
Negative Binomial (Feller, op. cit. and alsc Harvey, 1968}.

One final guestion to be noted is the physical meaning and vaiue
of persistence in discrete observation series! For inventory probiems
at a dam, say, there is a real difference between one-storm ficod-
waves lasting one day, and those lasting severél days. However, apart
from duration, what is the physical difference here that makes one
"contagious" from daily readings, and the cther random and independent?
Any item can form "runs" if observing is sufficiently fine-zrained.

One major development which parctly removes this problem is tne use of
autocorrelation and spectral analysis but these are outside osur carws

of reference here.

2.4 Magnitude and Frequency of Discrete Events

The probability of events of variocus magnitudes is of major oorncern

in such fields as long-range forecasring, wate

Cyesvurce development, and
natural hazards, and has become a central issue in geomorpholiogy (Wolmen

and Miller, 1960). Magnitude mesd 5w hzve the same sratisri-al

S
TS
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as undifferentiated counts even in the same event-type. One may obey
an arithmetic, the other a logarithmic law. Magnitude can be an
independent random variable while frequency has trend or clustering,
and vice versa. For instance, sharply peaked flood waves may occur
randomly throughout the year; but thelr at-a-station magnitude, which
depends among other things on volume of water already in the channel,
may be seasonally determined. Occasionally, magnitude is a discrete
variable. Energy levels in the electron cloud of an atom, and wave-
lengths of radiation emitted at changes of level are classic examples.
The damaging impact of natural hazards may related significantly to
attainment of certain thresholds, say, of areal extent or mechanical
loading. Strength of building materials, or eievatioﬁ of different
forms of land-use on a flood plain will create such thresholds. 1In
most cases, however, magnitude in natural phenomena is continuous
over part or all of the range of interest,

A simple but powerful heuristic device for exploring probability
structures here is some variant of ''occupancy' models. For instance,
take a set of boxes and stack them to form pigeon-holes. Let each
column of boxes belong to one item, and each row represent a level of
magnitude. It could be height, mass, areal extent; we will use "energy
level." The single items in each column will be distinguishable but
physically identical packages, and we can begin with the following:

i) n = number of packages on an energy level.

ii) N %zzhj ; number of packages in the system.

iii) uy = energy level (i.e. magnitude) of 4 th row.
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iv) e; = energy of the jth package.

v) U =z§ej ; energy of the overall system.

vi) With bounds: max {?j}SU ; min {53}20

vii) And conditions: gf = (0,1,2,...n) ; energy only to adopt integer

values
and A%j = Uyt
and AU = €j+l-€j ; all changes to occur
stepwise, one energy unit at
a time.
and p(AEj) = p(A€j+l) ; all Ag;

The procedure for generating a distribution is to assign energy
units by dipping into a well-shaken urn containing indentifiable discs
in equal numbers for all packages, - a "multinomial" urn (Eqn. 5), such
that:~

P(nj) = p(nj+I) ; all ny

Actually, for such a random process it is only necessary to
calculate the a priori probabilities from the permutations and
combinations possible at given U and N. For example:-

LET N = 5, and U = 4. We show the possible combinations

diagrammatically and the values for permutations (N!/nlln 'n3!n4!n5!)

9"
below.

a b c d e
4le
3 ®
2 . o e

» oo slejele
ol oiole ol oloile
5! 51 5! 5! 5t
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The probability p(e) of occupance of a given level depends on the
total number of ways a package can be on that level relative to all

other possible levels. Writing this simple case out in full we have:-~

a b c d e

p(o)= (4x5) + €3x20) + (2x30) + (3x10) 4+ (1x5) = 175 ; p(o) = 0.50
p(e)«= (o) + (1x20) + (2x30) + (o) + (4x5) = 100 ; p(e) = 0.29
p(2¢e)« o + o + (1x30) + (2x10) + o = 50 ; p(2e)= 0,14
p(3e)= o + (1x20) + o + o + o = 20 ; p(3e)= 0.06
p(4e)= (1x5) + o + o + o + o = 5 ; pl4e)= 0.01

350 1.00

Even here, features which become dominant as N becomes large (and U
is close to or greater than N) are clear. The likelihood of all the
energy going to one package, p(4tc) is negligible as is the even
distribution in e). The largest number of permutations occurs where
packages are most spread out among energy levels (in c¢), and this combination
most closely approximates the overall distribution. With large N and U the
latter feature is overwhelming, so that the probabilities of the best-
segregated combination p*( ) describes the overall distribution with
negligible error. Finally, we note that the probability of occupance
falls as ¢ increases. This will not be tfue with U appreciably greater
than N, when the lowest levels are as unlikely as the highest, - a more
realistic representation of many natural energy distributions. However,
it illustrates a general principle of the conservatism of energy
distribution.

While developments of this kind have received little attention in our
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field, I suspect that here is one of the few types of theoretical approach
that make the discrete-event perspective on magnitude and frequency a
worthwhile alternative to the powerful continuous methods which can be
adapted from statistical communication theory. Therefore we will pursue
the matter a little further, providing some background of use in sampling
problems, statistical estimation and extreme value questions,.

Given the same initial constraints, the only practical problem with
large N is to find the arrrangement where (N!/nl!nzl)..ns!...) = Ga is a

maximum (Gmax)’ since that allows us to find p*(€). This is a mathematical

problem in which we hold U fixed and observe what happens to Ga with small

changes G(nj) ny,0,,...etc., We can write:-
= =8 + ==& —
Ga &n, Anl 50, An2 + ... éns Ans+
.8G
=Z_ J 2An
) gns S

Our deliberations will be more effective if we write:-
_ Y 8(LnGa)
A (LnGa) = Zé-—ﬁ-s-——[&ns

noting that:-

N!
In Ga = Lﬂnl!ﬁ;!...n :
S

LH(N!)“Ln(nl:)—Ln(HZZ)_.G'Ln(n )
. 6 5 L @) s
PR %_[-{S‘(l{nca) = . —S-ﬁ—g n nS .

With the aid of Stirling,s formula the right-hand term becomes:-
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ban!) = n - bn n-n
s[Ln(a!)] = [n-1n(n)-n]
= n%.+ In(n)-1
= {n(n)

and

§ - _ y
EE; (LnGa) = bn(ns’)

A solution might now be looked for such that:-

—Ln(nsl) =0

However, this expression does not necessarily satisfy the conditions:-

and

However, we can take account of these two constraints by multiplying

by, as yet, undetermined constantgor Lagrangian multipliers L,, and L

1 2
(see Sokolnikoff and Redheffer op. cit. p.342). Since adding zero does
not affect our original development we can now write:-

A(bnG)=E§—g£l§~a-z—Mm + L An + L € An
a S Gns s 1ls S 2 s s 8

R

6 €
3—ns (ana) + 1, + L€

—tn(ns) + L, + Lye_ ;giving stationary Ln G ax

= 0

®
Thus, the most probable values ng of the n_ are found from:-
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bnn =1L, +1L, e (15)
and
ng = expl[L

17008 ]

= exp(Ll)exp(LZES)

Thus the probability cf occupying an energy level is an exponential
function of energy. Since overall energy will be normally distributed
one can see some analecgy here with normally distributed event-counts
that have exponential recurrence intervals. Meanwhile, the above
development also defines a measure of the uncertainty, or ''statistical
entropy' which depends on the same constraints, but is given by 1n Gmax’
so that it varies more slowly and at a decreasing rate with N and U
(see Fast, 1962 for a discussion and also more advanced treatment of
above material). The well-known result in statistical thermodynamics
that entropy tends to a maximum, is no more than a formalisation of
arguments above, that the state having the greatest number cf micro-
states is also the most probable state. As a cotollary, statistical
entropy also gives a measure of our inability to distinguish between
configurations of micro-states,

If it is found that the magnitude-frequency distribution of a set
of natural events or a component of their‘measurements obeys a normal
distributdon, then some random dispersal of energy, mass etc., along
the lines depicted above might be ivoked for. Just such reasoning as
this has been applied to sea waves in which height and slope are

approximately Gaussian variables (Cartwright, op. cit.).
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We are not confined to the normally distributed case. Obviously,
by modifying the constraints, the above development is open to a variety
of other results (i.e. with biased sampling, irregular energy levels,
non-regular dispersion etc.,). At this point we need to note, also
that different magnitude variables of the same event often have different
distributions. The distribution of stage heights on a river is
quantitatively unlike the associated distribution of discharge.

In deriving a distribution for wind speeds, closely approximating
actual measurements, Davenport (1968) used essentially similar reasoning
to that above. Beginning with the assumption of an isotropic wind with
randomly distributed, horizontal directional components, he arrives at
a Rayleigh distribution for the speeds over a small range of magnitude
and in a small directional segment. This is, as we would expect, an

exponential distribution of the form:-
2

x .
p(x) = e 202 . x50 (16)
RAYLEIGH DISTRIBUTION

Incidentally, this particular result illustrates how the choice of
measurement or variable influences the distribution obtained. A
Rayleigh probability function obtains when we study the envelop swept out
by a rotating-vector following a Gagssian.wave—form. The probability
density function of this envelop cannot itself be Normai (Stewart, 1960,
Sec. 11, 5.). It is not surprising that :ine Rayleight describes the distribution
of total sea-wave heights under parallel constraints to these used by
Davenport (Cartwright op. cit. p.582). Davenport (op. cit.) also

proceeded to show how the distribution can be modified to account for
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anistropy and a 'prevailing wind' situation. He arrives at a Weibull
distribution:

p(>x) = e—(—E—) (17)
Basically this just allows some flexibility in the exponent, although
his empirical results indicate that the exponents are normally so close
to 2 that the Rayleigh would be a very close fit.

There is an alternative theoretical approach which might lead to''such
distributions. If the magnitude of some event relates more-or-less
directly to a physical law or experimental regularity of a particular
form, the event-distribution may reflect that form. The rate of nucleation
of ice has been shown experimentally to increase exponentially with
increased supercooling and to decrease exponentially for fixed temperatures
(Vali and Stansbury, 1965). The size distributions of hail-stones and
magnitudes of hail-shafts, might be expected to reflect these regularities.
Provisional evidence indicates they do though not in a simple fashion
(ibid. p. 25). Likewise, the changing thermal conductivity of ice as
it thickens is an exponential decay function, and we might expect the
thicknesses of sea- or lake-ice encountered by ice-breakers to be
related to this. 1In each case, of course, the individual events or
measurements may be random variables in similar ways to our energy-level
model above. However, it should be apparent that some kind of stochastic
"growth" or ''decay" process would be more directly relevant here.

A distribution not mentioned so far which occurs fregquentiy in
natural situations is the lognormal. We have considered exponential

y/a

functions of the form x = e Their inverse is a logarithmic function
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of the form y = a 1ln x. If plotted on a line, the actual measurements
for such a function would increase geometrically;but their logarithms,
arithmetically. In particular, when plotted as a frequency function
on arithmetic paper the logarithms of the observations should plot as

a straight-line. This property is associated with normality, and leads
to the idea a '"lognormally" distributed phenomena. The probability
density function used reflects the relation to the Normal (Eqn. 7),

and is:- )

T = (18)
(x-c)ov2n

p(x) =
=0

Evidently, ln (x-c) is normally distributed.

Just as the Normal distribution was seen as developing from the
sum of many independent, identically distributed random variables;
the Lognormal would arise from the products of such variables. The
kind of situation where the Lognormal fits recognisable physical
regularities is in certain "growth' properties. Viewed over time,
many of the "events' we are interested in grow through accumulazed
mass, energy, or through concentration or spreading. This may occur
by simple addition, but, as in many biological and economic phenomena,
- where the Lognormal has played a large role, - growth or intensification
of natural ''packages' may also depend upon the existing size. Following
Cramer (1945, p. 219-20), suppose cur ''package,'" - say, some aspect of
a storm, warm-spell, flood wave - grows by a series of random inputs
E1s€psevrEs and let X be the magnitude of event produced by the inputs

sl,;.;,eua The increase due to input ¢ is then proportional to ¢

u+l u+l
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and some function g(xu) of the size of the event:-

Xutl = % + Eu+lgkxu)

We then have
E: Xu—-lxu
e, e, + 0 e = —
1 2 8 . g(xu)

If each input gives but a small contribution we can write:-

X 4
. - d(t)
El + \:2+ vee ES = g(t)

%0 (19)

Cramer shows that if g(t) = t then log x is asymptotically normally
distributed (see Aitchison and Brown 1957, Ch. 3 for more elaborate
discussions). This so-called "law of propertionate effect" has some
severe logical and theoretical limitations but the associated distributions
have proved very useful. Again, a number of physical laws relevant to
natural events or their impact on man, are essentially lognormal functions.
The relations between flow velocity and competence of particle transport
by water follow Stokes' law for fines, and the "impact law" for coarse
materials. Both laws are lognormal functions under logarithmic trans-
formation. Tolerance of stress, and sensory '‘adaptation' in certain
animals and man seem to follow a logarithmic law (see also Gaddum,
1945 and related correspondence). Erosional events, or human response
to certain environmental condirions may be related to such regularities.

More generally, it is possible to represent various distributions
as Normal and to associate parameters with physical effects, using the
Edgeworth-Kapteyn method. Let a distribution be described by:-

1 _%Igfx)-m 2

px) = We ag (20)
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where g(x) is chosen so as to be normally distributed, and m and ag
can be estimated. Any random variable x which fits this distribution
may be regarded as the limit of a sequence of random variables of the

form t, = t0 + z h\to), tz = t.+zzh(tl).ao with z z

1 1 1
distributed random variables and t.,+t.+... =Jr

1 72
%6

1’ ...)normally

()
h(t)

2
= g(x). The z

l,
Zy,ee. Can then be thought of as the response magnitudes of the

physical process which successively produces t The analogy

1’ b2

with Cramer!s development above is obvious (c.f. again 2.3. pp. ).

2.5. Extreme Event Probabilities

Extreme events are those whose magnitude is very high or low, and
in most cases means they are also rare events. Geographers may, of
course, be interested in events that are extreme relative to those of
other regions, though common in an extreme enviromment, but I know of
no work on probabilities of "spatial extremes."

Probabilistic study of extreme events has been closely tied to
the mathematical theory of extreme values, and has dealt almost entirely
with random, stationary series. Most substantive studies operate on the
basis that periodicity, trend or serial correlation can be removed or
ignored. The mathematical theory of extreme value probabilities is
asgociated particularly with the work ot von Mises, Fréchetr, Fisher
and Tippet, Gnedenko and E. J. Gumbel. Undoubtedly, Gumbel's work has
been the most detailed and exhaustive, and the most widely applied.

The present discussion will be based mainiy on Gumbel (1954a; 1954b;

1958a; and 1958b).
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One of the most vexing questions in extreme value statistics is
the sense in which it is impossible to win by honest means. There
are two aspects to this; first, statistical estimation of parameters
of a distribution requires a sufficiently large and representative
sample. Second, the sample must be statistically homogeneous. For
extreme events these two requirements are in some degree self-deféating.
Given enough time even the most conservative properties of the earth
or universe change. Without a longish period of time we cannot obtain
an adequate sample. The same reasoning applies if we cast our net
widely in a spatial sense.

There are two possibilities. If we can discover the overall or
initial distribution in which the extreme values arise, then we can
determine their probabilities directly from the structure of the
distribution. Generally, investigators have found they cannot define
the initial distribution. We then consider the ways extreme values can
behave whatever the initial distribution; the "distribution free"
approach. The two approaches are not mutually exclusive. Extreme
value behaviour of known distributions must fit one or other of the
models developed by the second approach.

The core of Gumbel's reasoning, based mainiy on Fisher and
Tippet (1928) is to evaluate in mathematical terms, how a distribution
can behave as sample size tends towards infinity, and then define
criteria for deciding whether a given set of extreme values behaves as cne
or other of the possible limiting or asympototic distributions of the

largest value. The decision criteria have been closely associated with
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the development of special graph paper and plotting position conventions.
These have done more to give Gumbel's work wide circulation - and
misinterpretation(!) - than anything else, but will not be dealt with
here. We look at the probabilistic reasoning only.

In his book, Gumbel (1958a) devotes some space to the extreme
value distributions of probability models such as we have already
discussed. Our examlination of the occupation of energy levels would
lead us to expect that exponential functions play a central role.
For an Exponential distribution of the form f(x) = ex, Gumbel shows
(1958a, pp. 113-4) that the most probable or modal largest value is

given by:-

— =lInn [

- (21)
n

which relates, of course, to our earlier discussions. He further

shows that the mode is here equal to the important statistic

characteristic largest wvalue, U, found from:-

F(ug) =T - I/n ; nz2 (22)
In general, an Exponential distribution, and also the Normal, Lognormal
and Gamma distributions of the types defined above, will have asymptotic
largest value probabilities of the same pre (Type 1 below). But, as we
might expect, all the asymptotes are of exponential form.
Where the initial distribution is unknown, and insofar as the data
can be treated statistically, Gumbel showed that the asymptotes can
only adopt three forms, as deterﬁined by the following conditions:-
1) TYPE I '"The Exponential': a probability function which
is unlimited to the right but converges towards unity in

about the same way as e™X approaches zero. Such distributions
possess all moments.
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ii) TYPE II: 'The Cauchy or Pareto Type' in which the
initial distribution 1s also unbounded to the right
but has a longer tail such that all moments do not
exist. This distribution was developed by Fréchet.

iii) TYPE III: 'The Limited Type'" in which the initial
distribution bounded to the right and the probability
reaches unjity at some limited wvalue.

For these conditions Gumbel gives the following asymptotic

probabilities ¢(m)x, of the largest values:-

1) 6 () = exp [-e KXW ; —w<x <o (23)
i1) ¢(2)(X) = exp [—(iig)]k ; x>65u>6 (24)
iii) ¢(3)(x) = exp [—(::ﬁ)k] 3 X<wiusw (25)

with, &, a parameter of the dimension 1/x;u, a parameter of the dimension
of x called the characteristic value (Eqn above); 6 the lower limit and
w the upper limit of a variable. Since the conditions for the smallest
values are symmetrical, extreme low value probability distributions can
be obtained by appropriate reversal of terms. The three types can be
distinguished graphically by virtue of the fact that their second

differentials or curvatures differ:-

= 03 ¢(1)x
2 .
dx Lo, ¢(2)X (26)
dy2
< 0y ¢(3) (see Jenkinson, 1955)
J

These three asymptote's of Fisher and Tippet which Gumbel elaborates,
play a dominant role in the study of natural extremes, having been used
for floods, high winds, droughts, waves, snow-fall, earthquakes, rainfall

and maximum boulder-size in sediments (see Table II at the end). Short
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reviews and modifying statements are numerous (e.g. Kendall, 1959;
Benson, 1967; Gumbel, 1967; Jennings and Benson, 1969; also Langbein
1949; Dalrymple 1960; Thom, 1968).

Gumbel's essentiaily theorecrical approach to the problem (i.e.
1968a, p. 345) seems close to the theme of the present paper. Unfortunately,
from a physical point of view the extreme value work to date is severely
limited in its usefulness. Gumbel's theoretical approach is in
mathematical formulation and fails to penetrate his application to
material situations. The principle strengths of his methods are also
their fundamental weaknesses. The fact that the asymptotic stability
assumption allows us to describe extreme values without knowing their
initial distribution is useful, but it also means that the method
can tell us little about the underlying process. Alternatively, if
we can define the latter we know all we need to know to determine the
extremes. The extreme value interpretation is especially useful in
allowing us to use the highest (or ilower) measurements of an observation
series. Commonly, these are annual maxima or minima. Nearly ail studies
available use such observations. But these are extracrdinarily crude
and insensitive sorts of observation, and I am aware of nc adequate
definitions of their physical meaning.

To illustrate, 1 have used the Gumbel methods to sctudy extreme
discharges of the Upper Indus. In the hundred year, once-daily
record it is possible to identify they type of fivod condition for many
of the annual peaks. These range from extended high flow periods due

to snow and ice melt, to short flood waves either from the same source
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or, from glacier dam-bursts, landslide dam-bursts or severe rain storms,
All the evidence is that these differing fiood conditions have different
frequency distributions. Using the Gumbel method the net result is a
Type 1 asymptotic distribution of the annual maxima; apart from some
vexing historical floods. It can only be concluded that the distribution
has some empricial justification but this may be as much a measure of
its insensitivity as its versatility; (see also Moran, 1957, and Yevdevitch
in Discussion of Gumbel 1967, p. 173).

In fact, there is hardly any work on extreme events in the sense of
well-defined, bounded physical states, except in the terms discussed in

the next section.

2.6 Impossible and Improbable Events

In scientific speculation, - the search for theory, - a valuable
working hypothesis may be that whatever does not defy physical laws
will happen sooner or later. In a deterministic framewcrk this idea
of '"natural fulfilment" adds little information, requiring the all-
knowing intelligence described by Laplace. In probabilistic terms the
idea has useful and meaningful formulations, that can be used even
without the information to apply extreme-value theory. Thus, while
the concentration of energy in one or two‘”packages” of the occupancy
analogue is highly unlikely it is not impossible: indeed if 1t could
not occur in the long run it wouid have to have probability zero. Very
exceptional events of this type are of interest because they can have
exceptionally high magnitudes or crucial configurations whose impact

extends far into the future, perhapg with irreversible consequences.



Obvious exampies are genetic mutations, natural or man-made calamities,

or invasions of exotic flora and fauna (see Gregtener, 1967). Here is a
meaningful field for geographical "exceptionalism'! Often, the significance
of improbable but not impossible events may not be in explaining nature

so much as showing the weakness of other theories. Many of the great
battles over culture contacts or innovations in human societies evaporate

in the face of long-run probabilities. Given enough time, the improbable
becomes certain.

The basic problem is, of course, arriving at some estimate of
probabilities. However, in these cases we are usually dealing with time
or space dimensions which make ordinary criteria of accuracy irrelevant:
simply obtaining orders of magnitude is highly instructive. For the
latter, circumstantial evidence may allow one to set the all-important
inner or outer limits. Another aid here which has greatly helped some
sciences, is what the astrponomer Carl Sagan calls ''the assumption of
mediocrity." It has some affinities with the Uniformitarian principle
but has only the status of a working hypothesis not a necessary principie
of investigation. We simply assume that what is unknown is like the
known until we have evidence that it is not. For instance, without better
knowledge, we would use short-run spatial.averages to estimate time-
frequencies at a place, or time frequencies to obtain spatial probabilities
for unexplored areas, and examine the consequences. Physical geographers
have had bad experience with verbal and visual relacving of contemporary
features according to evolutionary stages, but that was because there

were no Iimmmediately testable, refutable consequences built into the
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theory. Astronomers, from a relatively much shorter observation period
have developed rigorous and elegant theories of stellar evolution using
spatial sampling (e.g. Schwarzschild, 1958). Hydrologists are develop-
ing useful methods of estimating hydrologic characteristics of ungauged
rivers by extrapolation from gauged ones. In the same way we may be
able to deduce order-of-magnitude probabilities for important extreme
events without local observations.

Once we can arrive at some idea of the range of probable recurrence,
the mathematical formalities are fairly straightforward. Since we
generally have no basis for finding deterministic components we assume
that the exceptional event is random, and the probabilities turn upon
the kinds of questions used to introduce the Geometric and Negative
Binomial distributions (Eqns. 9 and 10). Since these are rare, singular
events, the Poisson distribution is the obvious basis for calculation.
The probability of recording at least one ''success' after exactly X trials
with a Poisson-type urn process is:-

pk = Isx) = I - (—3—}(7p (27)
while the probability of k = n successes 1s. found from the general
expression for the distribution (Egn.8 ). Using these assumptions,
Gretener (1967) tabulated some representarive values for given annual
probabilities (p) over various periods of years. For instance, if
p = 10_2, on average there will be one event in lOzyeazsi ten events 1in
103, and 100 events in 104 years.

Let us 1llustrate the point by some simple calculations. Major

natural disasters are still treated as ""Acts of God" by insurance
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companies and most laymen. We only expect them to cccur in our home
area @fter many generations. Howevér, assume that in the ordinary run
of events, any 1000 km2 area has an average chance of a major natural
upset once in 1000 years,- p = 0.001 or 10.'3 for any given year. Only
about 0.25 of the earth's land area has sufficiently dense or rich
populations to register globally significant damage. The sums are:-

Number of richly populated units = (3.5 x 107) (10_3) = 3,5 x 104

-1

(3.5 x 10*) (107°) yr
35 per year

Hypothetical rate of major disasters

This just happens to be very close to the average for a canvass of
reported multi-million dollar or high-death natural disasters in the
last 20 years. If they are indeed "Acts of God," He must be pretty mad
at somebody most of the time. At least, we can see that local awareness
is quite inadequate to evaluate the real dimensions of the extreme
natural hazard problem, which, far from involving the unusual is, in a
global sense, an ever-present component of man's environment. We also
see how, even at this crude level, the use of spatial averages and the
"mediocrity" idea given a new dimension to an old problem which is still

being investigated using "exceptionalist" questions.

PART III Logical Design in the Study of Discrete Events

3.1 The Present Situation

Much of the work on discrete natural events, even when mathematically
sophisticated, is at best exploratory, at worst misleading. The reasons
behind this rather drastic statement are two-fold. First, in the absence

of clear, physical frameworks, the statistical analysis which examines and
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reflects the largest range of relevant observations in the most varied
ways, 1s least suspect. Much discrete event work not merely grossly
simplifies the data before analysis (as we did in our lake-level example),
but only checks the fit of one or two related distributions. Second, as
a sclence moves from verbal, typological identification of objects and
variables, to a quantitative, parametric approach, the pattern of
significant continuities and discontinuities may change radically. In
terms of measured stress, energy, areal extent, duration, generative
process, controlling conditions and so on, phenomena which everyday
experience suggests are discrete and special merge or are otherwise
closely related to apparently distinct phenomena or conditions, and

the latter may help provide the main clues in interpretation. Conversely,
significant differences appear in phenomena thought tc be the same.
These points are especially relevant when we consider the probability
distribution underlying a set of events. Methods which fail to allow
for these possibilities, or are not based in well-articulated, testable
physical theory will be inferior and probably misleading. Since most
examples in Table 1 and II onliy look at the experiental-event record,
often interpreted as a point measure of doubtful physical meaning, their
significance is very ambiguous. (Important exceptions are Davenport,
1968, or Pierson 19). We need, therefore, tc lock ver, carefully at

the logic of discrete event studies if they are to be anything but

exploratory devices.

3.2 Logical Components

Any statistical investigation of natural phenomena must be formulated
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in terms of at least three components which we will call:-
i) The physical variable space.
ii) The observation space.
and iii) The evaluation space.
Essentially, studies of nature attempt to '"map' each of these into

the other rather as is shown by the diagram (Fig. 1).

FIGURE 1.
1 2 3
Physical Variable Observation Evaluation
Space Space Space

e.g. "Hydrologic System" Gauging-station Statistical
Record Analysis

Our objective is to show the logical status and equivalence

relations which can hold between these components.

3.2.1. The Substantive Area: Physical Variable and Observation Space

Scientists tend to regard their subject-matter as being objectively

present in a publicly observable environment. Although some empiricists
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and positivists object, this is a fundamental logical position of science.*
Nevertheless, such environments contain infinitely many elements, some of
whose measurable characteristics appear to vary continuously, some discretely,
or both on different occasions. In general, there exist infinitely many

observations or "messages.'" In an investigation we define the meaningful

source of information or observation space. Logically, the situation

is identical to that of a communications device for which a "message"
put out by a source is only meaningful to the extent that it can be read
and correctly interpreted by the receiver. Though it has logical status,

we cannot know the physical variable space directly, but only through the

defined observation space. We possibly never know the shape of the former,
although, through the procedure of testing scientific theories in terms

of crucial consequences we give that space high status. But thethhe
output of natural processes is only relevant to us to the extent that we

have means to read and interpret that output in our own ''languages."

Hence, while communication engineering is operationally different in that

the properties and goals of its sources are usually known and in humanoid
languages, logically the position of the receiver and its output is
identical to that of the observer or observing instrument and their
output, in a scientific investigation.

In discrete event studies, the simplest observing convention is to
treat the world in terms of one event-type. Here, the physical variable,

or source, can only give two message, ul(t) indicating that the phenomencn

#1t is the position recognised by Russeil and Whithead in the Principia .
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is present, and uo(t) when absent, and the observations are essentially

a string of noughts and ones. But what are we doing in the mapping

of "real-world'" into observation space when, say, the event is a tornado
or a male andmal? Actually, identification of the message ul(t) requires
the simultaneous verification of very many propositions, as indeed may

uo(t)° When we come to map the observations into the evaluation space,

the identification criteria will have no status. Even the theory of
observational errors cannot be used with non-specific data. Nevertheless,
the identification criteria do help determine the probability distribution
by defining the information which can be used in analysis.

Since it is theoretically possible to organise and select observations
of any kind so as to fit any distribution, one would want a formal
statement of how observations sampling the real world should have a
high probability of reflecting that world. Often, it is suggested that
the only issue here is obtaining a sufficiently unbiassed and large (i.e.
"representative'') sample. In fact, the key scientific issue is whether
the event space defined for the variable matches the probability space
of the source. The latter can only be searched out by the successive
testing of hypotheses couched in the terms of physical theory and ics

consequences.

3.2.2 The Interpretive Area: The Evaluation and Observation Spaces

At the opposite end from the "real-world':phenomencn is in ocur case
the probabilistic viewpoint involving a system of logic for the assigning

of probabilities to sets of numbers or other symbols, and formal tests
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of the "fit" of these to prcbability distributions.

Notice, however, the pivotal position of the observations. They not
only overlap the logical position of the physical variable, but alsoc the
evaluative area. In the latter case there are two aspects. First, there
must be a formal statement and defense of the type and arrangement of
observations that permits them to be evaluated by the probability calculus.
The observations must conform to the logic of statistical method. Second,
it is generally the case that rational, often statistical, criteria are
built-into the observing process so that evaluation or '"decision-making"
about what is being observed may precede the output of data as well as
be used to evaluate that data.

Once we have a set of acceptable observations the evaluation space
can involve at least three processes; simplificatdon sampling or trans-—
formation of the basic data, fitting of a priori distributions, and tests ¢
decide upon the most appropriate of the latter. In each of these cases,
the actual procedure is determined by statistical (or deterministic)
decision-making. From the physical aspect, it is the rationale of this
decision-making which is central. The decisions must be legical and scvited
to probabilistic designs, but above all they must reflect overt models wx
hypotheses about the formal or behavioural properties cof the substantive
phenomenon. Anything else is ''talking about talking," and remcves che

possibility of meaningful tests in the face of the facts.

3.3 The Logical Status of Discrete Events

The above statements apply throughout statistical work in science.

They are raised here because their import rarely penetrates work on discicete
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natural events. To ignore the obvious is worse than to state it.

We define the mapping of physical event into an observation space
by our "criteria of recognition'" (1. above). For the case of discrete
natural events I want particularly to point to the "logical jump'" which
can occur here. This arises especially when we have some central
phenomenon of interest (e.g. flood damage, drought, effective rainfall),
while the data are standard at-a-station recordg, - the most common
situation.

Take as an example the probability of occurrence, duration and
degree of flood-damage at a place, where guaging-station records are
to be used. Our substantive verbalised interest directs us only to
stage readings above some ''mo-damage' threshold. Now, as "input" to
social action, only these readings are relevant. Are they, however, a
physically separate set with a separate generative process, in a
hydrological sense? Almost certainly not. 1Is it possible that our
undifferentiated flood events have more than one source, and belong
to more than one probability distribution? Certainly it is possible.
Flood readings are essentially continuous with no-flood readings. If
our object is anything more than order-of-magnitude estimates for
forecasting, these points must be considered. (Usually they are not).
For what we are in fact doing is taking an event, in the sense of this
paper, and defining it, by a certain equivalence relation, as a
statistical event: namely, the type of a set or class of points in
a prqbability space such as might be represented by a Euler diagram.

In Fundamental research we need very good grounds for truncating,



46

warping or otherwise altering, or "sampling” in, a probability space.
Having chosen the station records as our input to statistical analysis,
they form the basis of our statistical event definition and the means
of defining the probability space(s). The flood-events form a sub-class
within the data and may belong to one or more statistical event types.
In cases such as this, the physical meaning of discrete readings referred
to earlier, is also a major issue.

In general, since we often lack sound physical theory on which to
base equivalence-relations of real-world and observations, the answer
is to look at as much of the data as possible, with as sensitive an
analysis as possible; preferably one which allows the data to "speak
for itself" to a large degree. To this extent, developments outside
of those discussed in the present paper seem more appropriate; methods such
as spectral analysis, 'self-similar snythetic hydrology'" (Wallis and
Mandelbrot, 1968) and other outgrowths of statistical communication theory.
These provide powerful and sensitive computational procedures that allow
one to scan large volumes of data and analyse events over wide frequency
ranges with considerable rigour. They need mention here because so much
of the work on discrete natural events, in fact uses observations such as
once~daily station readings which are susceptible to these forms of
analysis. As such, problems of determining the initial distc¢ibutions for
extreme or rare events may be best solved by them. Of course, the
logical probleméidescribed above are still large issues whatever
analytical method is used. Nevertheless, there is still a huge area
in which discrete event probabilities of the kind we have described is

relevant and valuable. Work of this kinds is also an imporrtant complement
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to other analyses. However, the literature indicates that the exploratory
phase of trying to see which distributions fit experientally-defined
objects, can no longer make much contribution. We now need to explore and
define the ways in which the distributions can arise under various
constraints, and the logic of proposed congruence of natural and

probabilistic events.



TABLE 1

EXAMPLES OF DISCRETE NATURAL PHENOMENA ANALYSED IN TERMS

OF VARIOUS PROBABILITY MODELS

BINOMTAL DISTRIBUTTON

a) Low precipitation: annual frequency of dry
months at Oxford, U.K., 1851-1943

b) Frosts: frequency of frost-days per month
(April) at Greenwich, U. K., 1841-1905

POISSON DISTRIBUTION

a) Hail: mean annual frequency at a station
(A< 2 )

b) Precipitation: counts of nuclei in small
parcels of air

¢) Heavy rainstorms: London, U. K., 1871-1931

k]

d) Meteorite strikes on (potential) human targets
NEGATIVE BINOMIAL

a) Hail: mean annual frequency at a station

( A>2 )
b) Tornadoes: frequency
MODIFIED POISSON (Eggenberger and Polya's)
a) Rain: monthly rainfall days
b) Snowfalls: Switzerland, 1901-1940
OTHER WEAKLY '"'CONTAGIOQUS' CASES

a) Earthquakes: frequency of aftershocks

NORMAL

a) Sea-waves: wave height, up-wind and cross-
wind wave slopes (n = 2000)

b) Sea-waves
c¢) Rainfall: cube roots of i) deily amounts at

Jakarta and Zurich and ii) monthly rainfall
at Halifax, Nova Scotia

Brooks and Carruthers
(1953, p. 71)

Ibid (p. 72)

Thom (1957)

Scrase (1935)

Brooks and Carruthers

(op. cit., p. 79)

LaPaz (1958, p. 229)

Thom (1957)

Thom (1963)

Wanner, E., (1942)

Uttinger (1945)

See bibliography in
Kitagawa (1965)

Cartwright (1962)
Pierson (1954)
Putz (1954)

Stidd (1953)
Bruce and Clark (1966)



Table 1 (Cont'd)
d) Temperature: frequency of discrete readings,
Scilly, U. K., Aprils, 1928-1937
GAMMA
a) Sea-waves: height
b) River levels: recurrence of exceedances
(various levels)
¢) Damaging hail storms: probabilities of
regional occurrence in Iowa
d) Precipitation: drought occurrence ("incomplete"
Gamma model)
MARKOV PROCESS
a) Temperature: cold spells at a place
b) River level: recurrence of exceedances
(various levels)
c¢) Precipitation: wet and dry days in rainy
season, Tel Aviv
d) Surface dew point, Minneapolis, July
EXPONENTIAL
a) River levels: exceedances (various levels)
b) Wind speed: frequent range (actually Rayleigh
and Wiebull)
c¢) Wave heights: trough-to-crest (Rayleigh)
d) Solar Radiation: storm-bursts of Spectral
Type I ’
LOG-LOG
a) Meteorites: cumulative size-frequency
distribution of meteoric masses and
meteorite craters
LOGNORMAL
a) Tsunamis: heights of "runup'" (R) or shore
inundation (% frequency against R/R)
b) Hydrologic series: wvarious examples

Brooks and Carruthers
(op.cit., p. 98)

Longuet-Higgins (1952)

McGilchrist et al. (1969)
Decker (1952)

Barger and Thom (1949)

Caskey (1964)

McGilchrist et al,
and 1969)

(1968
Gabriel and Neumann
(1962)

Gringorten (1968)
McGilchrist et al. (1969)
Davenport (1968)
Longuet-Higgins

Cartwright (1962)
Kundu (1965, p. 189)

Shoemaker (1966)
Hawkins et al. (1958,
pp. 730-731)

Van Dorn (1965)

Ven Te Chow (1954)



Table 1 (Cont'd)

c)

d)

£)

Streamflow: Maxima of average daily flows,
Elbow R., Alberca, 1908-1964

Tornadoes: dimensions of dawmage swath

Flood damage magnitude: U, S. A,

Earthquakes: magnitude and frequency

Keeping (1967)

Thom (1963)

American Insurance
Association (1956)

Asada (1957)



GUMBEL

a)

b) Low River Flow (Droughts)

c) High Winds

d) Maximum Vapour Pressure
GUMBEL (FISHER-TIPPET) TYPE I1

a) High River Flows

b) Low River Flows

c) High Winds
GUMBEL (FISHER-TIPPET) TYPE III

a) High River Flows

b) Low River Flows
LOGNORMAL

a) High River Flows

EXTREME EVENT PROBABILITIES

TABLE II

(FISHER-TIPPET) TYPE 1

High River Flow (Floods) (e.g. in U.S.A.,

Brazil, New Zealand, France, Canada, China, etc.)

LOG- PEARSON TYPE III

a)

High River Flows

PEARSON TYPE III

a)

High River Flows

Gumbel (1954a, 1954b,
1958a, 1958b)

Jenkinson (1955)

Boyd and Kendall (1956)
Kaczmarek (1957)

Gumbel (1954a, 1958a)

Court (1953)
Davenport (1958)

Jenkinson (1955)

Gumbel (1954a, 1958a)
Gumbel (1958a)

Thom (1968)

Jenkinson (1955)

Gumbel (1958)

Olofgors (1951)
Ven Te Chow (1955)
Kaczmarek (1957)

Water Resources Council
(1967)

Jennings and Benson
(1969)

Foster (1924)
Kaczmarek (1957)
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