A Risk-Informed Decision Framework to Achieve Resilient and Sustainable Buildings that Meet Community Objectives
PI: John van de Lindt
Co-PIs: Lori Peek, Hussam Mahmoud, and Bruce Ellingwood
Funding Period: 2015 – 2019
Funder: National Science Foundation
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1452725&HistoricalAwards=false
Strong winds, such as those produced by tornadoes and hurricanes, have resulted in billions of dollars in damage annually and continue to threaten the safety of building occupants. Much of the United States that is susceptible to these hazards also has expansive soils, where slab-on-grade construction is commonplace. A new type of modular residential building system, consisting of precast concrete elements combined with light-frame wood sub-systems, including a basement, will be investigated to achieve the following objectives: (1) provide life safety for occupants by enabling them to shelter in the basement, (2) utilize recycled sustainable backfill that will improve sustainability while decreasing the chance of expansive soil damage to the above-grade portion of the building, and (3) decrease the risk of tornado and hurricane wind damage by providing a stiffer and stronger living area through the addition of precast concrete elements. The building design will be optimized by considering how a building should be designed to contribute to community resilience while maintaining a prescribed level of sustainability and keeping homeownership costs at a reasonable level. While an integrated building system of precast concrete and light-frame wood components is not the norm in the current construction market, it represents an opportunity to investigate a new type of system that may reduce the cost of single and multi-family home ownership during the life-span of the building and, at the same time, improve the quality of life from a community perspective.
In this research, the attributes that make a community resilient will be de-aggregated to the building level to facilitate development of the soil-foundation-structure-building envelope system through a process that seeks to optimize building performance with respect to resilience and sustainability goals. The resulting building performance criteria will take into consideration common construction practices, while balancing community preferences with individual-level risk perceptions. The optimization will involve multiple objectives and constraints associated with specified resilience and sustainability attributes. The research hypotheses are that it is possible to develop risk-informed performance criteria for individual resilient and sustainable buildings exposed to a spectrum of natural hazards that can be matched to community goals, that building attributes can be identified and parameterized to support this general risk-informed decision framework, and that the risk-informed decision framework supporting these performance criteria for individual buildings will enable enhanced community resilience and sustainability by targeting public and private investments to manage life-cycle costs. This research will enable the following outcomes: (1) development of a decision framework that allows community resilience goals to be reflected in the design of complete building systems through de-aggregation of identified community attributes, (2) ability to relate building performance criteria to influencing factors at the community level and integration of sustainability metrics and risk perceptions of decision makers, (3) creation of a new concept for hybridized construction that is balanced between resilience and sustainability objectives, (4) application of the decision framework to a range of test bed problems to demonstrate its ability to handle different size populations and demographic configurations, and (5) a student-centered learning experience. The de-aggregation of the attributes that make a community resilient and a building sustainable will enable a decision framework that addresses the paradoxical issue of single building optimization for community objectives and leads to practical performance-based criteria for an innovative building system. This approach will facilitate a new generation of improved performance-based building standards to achieve community resilience and sustainability goals.