Prompt 2: What has your research revealed regarding team formation, rapid reconnaissance research coordination, or interdisciplinary collaboration?
The National Science Foundation Minority SURGE project is designed to bring together racially and ethnically diverse teams of students and faculty mentors to learn about the history of disaster research, to prepare for rapid reconnaissance work, and to engage in boots on the ground research and service learning experiences. Although the SURGE project is still in its nascent stages, the inaugural group of SURGE mentees and the principal investigators on the project recently traveled to the U.S. Virgin Islands to learn about the early phases of recovery and to engage in community rebuilding experiences. This project has revealed the power and potential of bringing together students from diverse demographic and disciplinary backgrounds to inform disaster research and practice.
The household survey research was designed and conducted by a multidisciplinary team of transportation engineering, emergency management, and mass communication professionals. Survey instruments were integrated from an interdisciplinary intention that examined a holistic array of issues in understanding hurricane evacuation, including evacuation decision-making dynamics, household demographics, intra-family factors, social networks, information sources and characteristics, and evacuation logistics (e.g., timing, destination, mode, and routing). The team adopted a data/hypothesis-driven approach to structure the survey questionnaire so that a blended set of questions could comprehensively investigate hurricane evacuation behaviors at the individual and household levels.
This research is a part of a Rapid Reconnaissance Research project continuing five years after Typhoon Haiyan. The original team consisted of more than 40 researchers, mainly from Tohoku University, but also included researchers from the Philippines and the United Kingdom. Interdisciplinary research teams included hydraulic engineers, geologists, planners, architects, political scientists, informatics specialists, and medical doctors. Such a variety of specialists fostered a wide range of research outcomes, including hazard and damage assessment through mapping/satellite image processing; storm surge simulation warning and evacuation assessment; assessment of emerging medical threats; and housing, community, and societal dynamics. Having all specialists collaborating and working in the field at the same time was complicated due to scheduling, focus of interests, and levels of understanding on certain topics. In addition, having many specialists visiting the field at different times contributed to complications for local stakeholders.
One of our main challenges was to collect initial environmental water samples during and after Harvey. An a priori identification of representative sampling locations was not possible due to the considerable logistical complications involving access to the sites and safety concerns. Since the primary objective of this study was to evaluate the fate and transport of fecal indicator bacteria and human pathogens in impacted surface and coastal waters immediately following the extreme flooding caused by Hurricane Harvey, this research provided an unprecedented opportunity to advance fundamental understanding in the area of fecal source tracking and provide urgent and much needed information on microbiological water quality in the aftermath of a natural disaster.
This research reveals important lessons regarding interdisciplinary collaboration. First, territorialism leads to separate vocabularies and theories, leading to separate policies and practices, even when topics are essentially the same or build on each other and are stronger for it. Second, the word "interdisciplinary" is frequently used even when little implementation is witnessed. Third, a different field emerging tends to claim originality and newness, frequently neglecting the history and lessons of older work. Fourth, continuing generation of jargon tends to confuse and repackage old ideas with limited forward or useful progress. To overcome these challenges, starting with fundamentals assists in linking people, ideas, and disciplines in order to make best use of research-policy-practice connections and to avoid reinventing old ideas.
Our project has highlighted the importance of assembling a team with firsthand knowledge of the local public health system and context. As researchers coming from Washington to conduct a study in Texas, we sought to familiarize ourselves with the public health landscape in Texas before initiating project activities. To accomplish this goal, we utilized our relationships with Texas-based practice and academic partners to guide the study. These team members provided invaluable information about the context in which our study population—local health departments in Texas—operates. This information about the Texas public health system helped us refine the study objectives and methods and to interpret the study findings. Our Texas-based partners also reviewed and provided feedback on our study proposal and the data collection instrument to ensure that the questions were appropriate for and would resonate with our study population. This enabled us to capture detailed data from study participants.
Through our experiences in the 2017 hurricane season, we were able to demonstrate how researchers who had not previously collaborated could be coordinated into effective teams and rapidly deployed to collect valuable perishable data, even in a rapid sequence of storms. Our successes in this regard were made possible by adopting an agile mobile data collection platform (Fulcrum), swiftly crafting a set of policies and standard operating procedures that guided equitable formation and support of teams, pre-positioning and empowering regional nodes in the impacted areas, creating unified data standards with trained data librarians to painstakingly deliver a quality assured dataset, and ensuring centralized command and control both before and after to guide the entire process of deploying teams through the curation of their data. The experience, while demanding, was ultimately possible by having so many dedicated and talented researchers volunteer for this effort.
In response to Hurricane Maria, the Federal Emergency Management Agency's (FEMA’s) Office of Response and Recovery mission assigned us to be official FEMA crowdsourcing coordinators at the National Response Coordination Center to enable easy coordination between the official response agencies and the digital volunteer networks. We spent a significant amount of time engaging with FEMA staff, its partners, and liaisons from various Emergency Support Functions (e.g., situational awareness, geographic information systems, planning, communications, external affairs, Civil Air Patrol, and the U.S. Army Corps of Engineers) to socialize the concept of crowdsourcing to the whole community. This crowdsourcing coordination role will be tested at upcoming emergency management exercises and hackathons, which will also further socialize and raise awareness of these crowdsourcing coordination efforts through interdisciplinary collaborations.
Within the growing body of research on disaster recovery, the need for more international comparisons has also been acknowledged. This paper intends to contribute to a deeper understanding of the Japanese housing recovery experience, and is situated as part of an early preparation phase for an international collaborative research project that will consider the housing recovery in Japan and the United States in more depth.
We have found that quickly entering the field following a disaster is easiest with an established team that has already worked together. This project represents supplemental funding to ongoing disaster recovery research that allowed us to incorporate Hurricane Harvey-affected areas into a large comparative case study project. We were able to quickly mobilize due to having an already established team (including trained graduate assistants), institutional review board approval, and pre-established data collection protocols. This allowed us to move seamlessly into the field.
We evaluate and present lessons learned from four stages of our campaign, including preparing for the sampling campaign, conducting the sampling campaign, disseminating results to the public, and communicating the results to the broader scientific community. We discuss Quality Assurance/Quality Control plans; determination of partner roles and responsibilities prior to, during, and after the emergency event; the importance of establishing protocols, tools, and agreements prior to future emergency events; and coordinating scientific knowledge dissemination. Based on our experiences, we aim to develop a list of actionable items and recommendations that can be implemented to set the groundwork for future emergency events to expedite response and facilitate a successful research campaign.
Hurricane Harvey made landfall in August 2017; by the next month, we had applied for and received National Science Foundation RAPID funding. The project builds upon an existing interdisciplinary team representing multiple institutions; we knew each other’s academic backgrounds and perspectives and had established efficient and productive ways to work together. That said, we were pressured to field the survey as quickly as possible but had to make critical decisions about survey length and content, mode of administration, and recruitment. Delays occurred due to procedural issues associated with subcontracting and other administrative requirements beyond researchers’ control. Such tasks are not always prioritized in tightly-resourced research projects and, as such, researchers assume these responsibilities as collateral duties that can hinder progress in significant ways. We have learned about the importance of project management for executing administrative tasks so that researchers can concentrate their efforts on tasks more in line with their backgrounds and training.
Our research has revealed three things regarding team formation, coordination, and rapid reconnaissance research. First, having one person in charge of communication efforts between labs and team members streamlined decision-making processes. Second, our research has further proved the importance of having on-the-ground team members familiar with the communities and sampling locations for coordination of the sampling efforts and shipping. Third, having consistent organization for data and documents made data analysis easier and more efficient.
This research contributes to the promotion of interdisciplinary collaboration in recovery field studies through methods related to team formation, survey design, and analysis. Collaboration was crucial to the success of the study, in that business recovery is intricately linked to physical, social, and economic systems. New physical damage states for commercial buildings were developed to be consistent across disciplines, and engineers, social scientists, and economists were strategically placed throughout data collection teams. The sampling strategy was done in conjunction with the housing portion of the survey in order to understand the spatial linkages between households and businesses, and to help understand the overall community recovery trajectory. Both the business and household surveys had questions specific to this goal. Lastly, the survey instrument was created through a partnership between researchers from social sciences and economics backgrounds so that data could be used in a range of economic and recovery modelling.
Margaret Reams, Louisiana State University
Michelle Meyer, Louisiana State University
Seungwon Yang, Louisiana State University
Seung-Jong Park, Louisiana State University
Kisung Lee, Louisiana State University
Lei Zou, Louisiana State University
One opportunity provided by this National Science Foundation RAPID project is the ability to quickly collect data on new events that fit within ongoing research projects. Our RAPID project, for example, built upon and extended ongoing research we have within the Interdisciplinary Computation and Analysis of Resilience team. We were able to refine data collection techniques and gather quick data that augmented and extended research questions related to social media use during Hurricanes Isaac and Sandy in 2012. Thus, the RAPID project was quickly initiated through a well-established team already working on similar questions, but provided novel insights and comparisons to existing datasets.